These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 3845853)

  • 1. Roentgendensitometric study of the phalanx.
    Trouerbach WT; Hoornstra K; Birkenhager JC; Zwamborn AW
    Diagn Imaging Clin Med; 1985; 54(2):64-77. PubMed ID: 3845853
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Radiological determination of mineral equivalents in bone. 3. A universally available exact mineral-equivalent measuring device for the determination of decalcification processes in finger bones].
    Gebhardt M; Heinen H; Zwicker H
    Fortschr Geb Rontgenstr Nuklearmed; 1973 May; 118(5):574-8. PubMed ID: 4352567
    [No Abstract]   [Full Text] [Related]  

  • 3. [Quantitative evaluation of bone mineral contents of hand bone using CR technique].
    Yamashita M; Honjo H; Murakami K
    Nihon Igaku Hoshasen Gakkai Zasshi; 1989 Feb; 49(2):214-6. PubMed ID: 2755787
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The use of photon absorptiometry in the diagnosis of renal osteodystrophy.
    Griffiths HJ; Zimmerman RE; Bailey G; Snider R
    Radiology; 1973 Nov; 109(2):277-81. PubMed ID: 4582537
    [No Abstract]   [Full Text] [Related]  

  • 5. [Determination of the mineral salt content of bones in chronic renal insufficiency].
    Tret'iakov AE
    Vestn Rentgenol Radiol; 1982; (3):32-4. PubMed ID: 7112902
    [No Abstract]   [Full Text] [Related]  

  • 6. Photon absorptiometry for non-invasive measurement of bone mineral content.
    Gupta S; Luna E; Belsky J; Gelfman N; Miller K; Davies T
    Clin Nucl Med; 1984 Aug; 9(8):435-9. PubMed ID: 6478720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Radiologic study of the mineral content of the phalanges of normal persons and patients in chronic hemodialysis].
    Kaye M; Lajzerowicz R; Jones V
    Union Med Can; 1971 Mar; 100(3):480-4. PubMed ID: 5555755
    [No Abstract]   [Full Text] [Related]  

  • 8. Bone-mineral estimation in normal and osteoporotic women. A comparability trial of four methods and seven bone sites.
    Goldsmith NF; Johnston JO; Ury H; Vose G; Colbert C
    J Bone Joint Surg Am; 1971 Jan; 53(1):83-100. PubMed ID: 5540163
    [No Abstract]   [Full Text] [Related]  

  • 9. Periosteal new bone formation (periosteal neostosis) in renal osteodystrophy. Relationship to osteosclerosis, osteitis fibrosa, and osteoid excess.
    Meema HE; Oreopoulos DG; Rabinovich S; Husdan H; Rapoport A
    Radiology; 1974 Mar; 110(3):513-22. PubMed ID: 4204516
    [No Abstract]   [Full Text] [Related]  

  • 10. [Bone densitometry findings in renal osteopathy].
    Samizadeh A; Marinkas H; Loew H
    Med Welt; 1976 Nov; 27(47):2274-5. PubMed ID: 1004172
    [No Abstract]   [Full Text] [Related]  

  • 11. [Investigation on the estimation of bone mineral content in vivo by radiographic methods].
    Yang DZ
    Zhonghua Fang She Xue Za Zhi; 1985 Jun; 19(3):149-52. PubMed ID: 2931257
    [No Abstract]   [Full Text] [Related]  

  • 12. Single photon absorptiometry and quantitative roentgenography in bone densitometry: a comparison.
    Price RI; Retallack RW; Gutteridge DH
    Australas Phys Eng Sci Med; 1988; 11(1):36-43. PubMed ID: 3365167
    [No Abstract]   [Full Text] [Related]  

  • 13. Deranged mineral content in the bone of patients with chronic renal failure, estimated by computed tomography.
    Marumo F; Sakurai K; Sato N; Shimada H; Iwanami S
    Int J Artif Organs; 1985 Mar; 8(2):95-100. PubMed ID: 3988368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A study on the phalanx bone mineral content in 273 normal pre- and post-menopausal females (transverse study of age-dependent bone loss).
    Trouerbach WT; Birkenhäger JC; Collette BJ; Drogendijk AC; Schmitz PI; Zwamborn AW
    Bone Miner; 1987 Oct; 3(1):53-62. PubMed ID: 3505193
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bone mineral content assessment by photon absorptiometry in a normal population.
    Gava A; Patrese P; Zorzetto M
    Rays; 1985; 10(2):47-8. PubMed ID: 3843653
    [No Abstract]   [Full Text] [Related]  

  • 16. [Role of photon absorption densitometry of the bone in uremic osteodystrophy].
    Bichi Secchi E; Baldelli S; Argalia G; Pigini G; Lombardi M; Procaccini G; Bordoni E
    Radiol Med; 1987 Apr; 73(4):265-70. PubMed ID: 3575801
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [The evaluation of the bone mineral content in renal osteodystrophy by the CT numbers of the mid-shaft and lateral condyle of the femur].
    Sakurai K; Marumo F; Iwanami S; Uchida H; Matsubayashi T
    Nihon Igaku Hoshasen Gakkai Zasshi; 1987 Jun; 47(6):813-20. PubMed ID: 3684522
    [No Abstract]   [Full Text] [Related]  

  • 18. Rectilinear transmission scanning of irregular bones for quantification of mineral content.
    Vogel JM; Anderson JT
    J Nucl Med; 1972 Jan; 13(1):13-8. PubMed ID: 5007966
    [No Abstract]   [Full Text] [Related]  

  • 19. Interrelationship between metacarpal bone mass and bone mineral content in renal transplant recipients.
    Andresen J; Nielsen HE
    Acta Radiol Diagn (Stockh); 1982; 23(5):513-6. PubMed ID: 6760672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantification of bone density and mineral content.
    Bentley HB
    Radiogr Today; 1989 Jan; 55(620):16-8. PubMed ID: 2590411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.