These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 38458609)

  • 21. Tunable Schottky contacts in MSe
    Lv X; Wei W; Zhao P; Li J; Huang B; Dai Y
    Phys Chem Chem Phys; 2018 Jan; 20(3):1897-1903. PubMed ID: 29296994
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electrical Contacts in Monolayer Arsenene Devices.
    Wang Y; Ye M; Weng M; Li J; Zhang X; Zhang H; Guo Y; Pan Y; Xiao L; Liu J; Pan F; Lu J
    ACS Appl Mater Interfaces; 2017 Aug; 9(34):29273-29284. PubMed ID: 28783298
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Junction-Structure-Dependent Schottky Barrier Inhomogeneity and Device Ideality of Monolayer MoS
    Moon BH; Han GH; Kim H; Choi H; Bae JJ; Kim J; Jin Y; Jeong HY; Joo MK; Lee YH; Lim SC
    ACS Appl Mater Interfaces; 2017 Mar; 9(12):11240-11246. PubMed ID: 28266221
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stability of Schottky and Ohmic Au Nanocatalysts to ZnO Nanowires.
    Lord AM; Ramasse QM; Kepaptsoglou DM; Periwal P; Ross FM; Wilks SP
    Nano Lett; 2017 Nov; 17(11):6626-6636. PubMed ID: 29024594
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The dependence of the Schottky barrier height on carbon nanotube diameter for Pd-carbon nanotube contacts.
    Svensson J; Sourab AA; Tarakanov Y; Lee DS; Park SJ; Baek SJ; Park YW; Campbell EE
    Nanotechnology; 2009 Apr; 20(17):175204. PubMed ID: 19420588
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tunable Schottky barrier height of a Pt-CuO junction
    Meng J; Li Q; Huang J; Li Z
    Nanoscale; 2021 Oct; 13(40):17101-17105. PubMed ID: 34632472
    [TBL] [Abstract][Full Text] [Related]  

  • 27. New Method to Determine the Schottky Barrier in Few-Layer Black Phosphorus Metal Contacts.
    Lee SY; Yun WS; Lee JD
    ACS Appl Mater Interfaces; 2017 Mar; 9(8):7873-7877. PubMed ID: 28182398
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Temperature-Dependent Transport in Ultrathin Black Phosphorus Field-Effect Transistors.
    Yan X; Wang H; Sanchez Esqueda I
    Nano Lett; 2019 Jan; 19(1):482-487. PubMed ID: 30518214
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microstructure characterization, phase transition, and device application of phase-change memory materials.
    Jiang K; Li S; Chen F; Zhu L; Li W
    Sci Technol Adv Mater; 2023; 24(1):2252725. PubMed ID: 37745781
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Energy Efficient Neuro-Inspired Phase-Change Memory Based on Ge
    Khan AI; Yu H; Zhang H; Goggin JR; Kwon H; Wu X; Perez C; Neilson KM; Asheghi M; Goodson KE; Vora PM; Davydov A; Takeuchi I; Pop E
    Adv Mater; 2023 Jul; 35(30):e2300107. PubMed ID: 36720651
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Artificial Synapses Based on Ferroelectric Schottky Barrier Field-Effect Transistors for Neuromorphic Applications.
    Xi F; Han Y; Liu M; Bae JH; Tiedemann A; Grützmacher D; Zhao QT
    ACS Appl Mater Interfaces; 2021 Jul; 13(27):32005-32012. PubMed ID: 34171195
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High-performance ambipolar MoS
    Le Thi HY; Khan MA; Venkatesan A; Watanabe K; Taniguchi T; Kim GH
    Nanotechnology; 2021 Mar; 32(21):. PubMed ID: 33556924
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Schottky barrier height engineering on MoS
    Choi D; Jeon J; Park TE; Ju BK; Lee KY
    Discov Nano; 2023 May; 18(1):80. PubMed ID: 37382714
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Contact engineering for 2D Janus MoSSe/metal junctions.
    Shu Y; Li T; Miao N; Gou J; Huang X; Cui Z; Xiong R; Wen C; Zhou J; Sa B; Sun Z
    Nanoscale Horiz; 2024 Jan; 9(2):264-277. PubMed ID: 38019263
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Investigation of the interfaces in Schottky diodes using equivalent circuit models.
    Yim C; McEvoy N; Kim HY; Rezvani E; Duesberg GS
    ACS Appl Mater Interfaces; 2013 Aug; 5(15):6951-8. PubMed ID: 23767937
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Orientation controlled Schottky barrier formation at Au nanoparticle-SrTiO3 interfaces.
    Kraya R; Kraya LY; Bonnell DA
    Nano Lett; 2010 Apr; 10(4):1224-8. PubMed ID: 20302281
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of Schottky Barrier and Access Resistance in Organic Field-Effect Transistors.
    Wang Q; Jiang S; Zhang B; Shin EY; Noh YY; Xu Y; Shi Y; Li Y
    J Phys Chem Lett; 2020 Feb; 11(4):1466-1472. PubMed ID: 32013442
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Scalable Memdiodes Exhibiting Rectification and Hysteresis for Neuromorphic Computing.
    Shank JC; Tellekamp MB; Wahila MJ; Howard S; Weidenbach AS; Zivasatienraj B; Piper LFJ; Doolittle WA
    Sci Rep; 2018 Aug; 8(1):12935. PubMed ID: 30154545
    [TBL] [Abstract][Full Text] [Related]  

  • 39. van der Waals Stacking Induced Transition from Schottky to Ohmic Contacts: 2D Metals on Multilayer InSe.
    Shen T; Ren JC; Liu X; Li S; Liu W
    J Am Chem Soc; 2019 Feb; 141(7):3110-3115. PubMed ID: 30688068
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electrical Contact Barriers between a Three-Dimensional Metal and Layered SnS
    Lv C; Yan W; Shieh TH; Zhao Y; Wu G; Zhao Y; Lv Y; Zhang D; Chen Y; Arora SK; Ó Coileáin C; Chang CR; Cheng HH; Hung KM; Wu HC
    ACS Appl Mater Interfaces; 2020 Apr; 12(13):15830-15836. PubMed ID: 32134622
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.