These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 38458609)

  • 41. Nanoscale Chemical Heterogeneity Ensures Unprecedently Low Resistance Drift in Cache-Type Phase-Change Memory Materials.
    Huang J; Chen B; Sha G; Gong H; Song T; Ding K; Rao F
    Nano Lett; 2023 Mar; 23(6):2362-2369. PubMed ID: 36861962
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Statistical Study on the Schottky Barrier Reduction of Tunneling Contacts to CVD Synthesized MoS2.
    Lee S; Tang A; Aloni S; Wong HS
    Nano Lett; 2016 Jan; 16(1):276-81. PubMed ID: 26698919
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Electrical characterization of two analogous Schottky contacts produced from N-substituted 1,8-naphthalimide.
    Karagöz E; Fiat Varol S; Sayın S; Merdan Z
    Phys Chem Chem Phys; 2018 Dec; 20(48):30502-30513. PubMed ID: 30511079
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Amorphized length and variability in phase-change memory line cells.
    Noor N; Muneer S; Khan RS; Gorbenko A; Silva H
    Beilstein J Nanotechnol; 2020; 11():1644-1654. PubMed ID: 33178549
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Influence of interface inhomogeneity on the electrical transport mechanism of CdSe nanowire/Au Schottky junctions.
    Jin W; Mu X; Zhang K; Shang Z; Dai L
    Phys Chem Chem Phys; 2018 Aug; 20(30):19932-19937. PubMed ID: 30022188
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Interface effects of Schottky devices built from MoS
    Li YD; Zhen WL; Weng SR; Hu HJ; Niu R; Yue ZL; Xu F; Zhu WK; Zhang CJ
    J Phys Condens Matter; 2022 Feb; 34(16):. PubMed ID: 35105834
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Description and Verification of the Fundamental Current Mechanisms in Silicon Carbide Schottky Barrier Diodes.
    Nicholls J; Dimitrijev S; Tanner P; Han J
    Sci Rep; 2019 Mar; 9(1):3754. PubMed ID: 30842531
    [TBL] [Abstract][Full Text] [Related]  

  • 48. High speed, high temperature electrical characterization of phase change materials: metastable phases, crystallization dynamics, and resistance drift.
    Dirisaglik F; Bakan G; Jurado Z; Muneer S; Akbulut M; Rarey J; Sullivan L; Wennberg M; King A; Zhang L; Nowak R; Lam C; Silva H; Gokirmak A
    Nanoscale; 2015 Oct; 7(40):16625-30. PubMed ID: 26415716
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Materials and Processes for Schottky Contacts on Silicon Carbide.
    Vivona M; Giannazzo F; Roccaforte F
    Materials (Basel); 2021 Dec; 15(1):. PubMed ID: 35009445
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Determination of the Optimal Sensing Temperature in Pt/Ta₂O₅/MoO₃ Schottky Contacted Nanobelt Straddling Heterojunction.
    Cheung KW; Yu J; Ho D
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30400558
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Relation between bandgap and resistance drift in amorphous phase change materials.
    Rütten M; Kaes M; Albert A; Wuttig M; Salinga M
    Sci Rep; 2015 Dec; 5():17362. PubMed ID: 26621533
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Fermi Level Pinning at Electrical Metal Contacts of Monolayer Molybdenum Dichalcogenides.
    Kim C; Moon I; Lee D; Choi MS; Ahmed F; Nam S; Cho Y; Shin HJ; Park S; Yoo WJ
    ACS Nano; 2017 Feb; 11(2):1588-1596. PubMed ID: 28088846
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The determination of modified barrier heights in Ti/GaN nano-Schottky diodes at high temperature.
    Lee SY; Kim TH; Chol NK; Seong HK; Choi HJ; Ahn BG; Lee SK
    J Nanosci Nanotechnol; 2008 Oct; 8(10):5042-6. PubMed ID: 19198387
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Optical spectroscopic detection of Schottky barrier height at a two-dimensional transition-metal dichalcogenide/metal interface.
    Chen D; Anantharaman SB; Wu J; Qiu DY; Jariwala D; Guo P
    Nanoscale; 2024 Mar; 16(10):5169-5176. PubMed ID: 38390639
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Ultrahigh Gauge Factor in Graphene/MoS
    Lee I; Kang WT; Shin YS; Kim YR; Won UY; Kim K; Duong DL; Lee K; Heo J; Lee YH; Yu WJ
    ACS Nano; 2019 Jul; 13(7):8392-8400. PubMed ID: 31241306
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Graphene as a Schottky Barrier Contact to AlGaN/GaN Heterostructures.
    Dub M; Sai P; Przewłoka A; Krajewska A; Sakowicz M; Prystawko P; Kacperski J; Pasternak I; Cywiński G; But D; Knap W; Rumyantsev S
    Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32957632
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Influence of Asymmetric Contact Form on Contact Resistance and Schottky Barrier, and Corresponding Applications of Diode.
    Zhao Y; Xiao X; Huo Y; Wang Y; Zhang T; Jiang K; Wang J; Fan S; Li Q
    ACS Appl Mater Interfaces; 2017 Jun; 9(22):18945-18955. PubMed ID: 28505402
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Electrical Characterizations of Planar Ga
    Zhang S; Liu Z; Liu Y; Zhi Y; Li P; Wu Z; Tang W
    Micromachines (Basel); 2021 Mar; 12(3):. PubMed ID: 33802423
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Structural Transitions in Ge
    Behrens M; Lotnyk A; Bryja H; Gerlach JW; Rauschenbach B
    Materials (Basel); 2020 May; 13(9):. PubMed ID: 32369916
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Experimental and numerical investigation of contact-area-limited doping for top-contact pentacene thin-film transistors with Schottky contact.
    Noda K; Wada Y; Toyabe T
    Phys Chem Chem Phys; 2015 Oct; 17(40):26535-40. PubMed ID: 24922359
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.