These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 38458614)

  • 1. Glu102
    Sasaki T; Katayama K; Imai H; Kandori H
    Biochemistry; 2024 Apr; 63(7):843-854. PubMed ID: 38458614
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Agonist-induced conformational changes in bovine rhodopsin: insight into activation of G-protein-coupled receptors.
    Bhattacharya S; Hall SE; Vaidehi N
    J Mol Biol; 2008 Oct; 382(2):539-55. PubMed ID: 18638482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural changes in lumirhodopsin and metarhodopsin I studied by their photoreactions at 77 K.
    Furutani Y; Kandori H; Shichida Y
    Biochemistry; 2003 Jul; 42(28):8494-500. PubMed ID: 12859195
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystallographic Study of the LUMI Intermediate of Squid Rhodopsin.
    Murakami M; Kouyama T
    PLoS One; 2015; 10(5):e0126970. PubMed ID: 26024518
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent bioorganic studies on rhodopsin and visual transduction.
    Nakanishi K
    Chem Pharm Bull (Tokyo); 2000 Oct; 48(10):1399-409. PubMed ID: 11045439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Early Proton Transfer Reaction in a Primate Blue-Sensitive Visual Pigment.
    Mizuno Y; Katayama K; Imai H; Kandori H
    Biochemistry; 2022 Dec; 61(23):2698-2708. PubMed ID: 36399519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Conserved Proline Hinge Mediates Helix Dynamics and Activation of Rhodopsin.
    Pope AL; Sanchez-Reyes OB; South K; Zaitseva E; Ziliox M; Vogel R; Reeves PJ; Smith SO
    Structure; 2020 Sep; 28(9):1004-1013.e4. PubMed ID: 32470317
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atomistic insights into rhodopsin activation from a dynamic model.
    Tikhonova IG; Best RB; Engel S; Gershengorn MC; Hummer G; Costanzi S
    J Am Chem Soc; 2008 Aug; 130(31):10141-9. PubMed ID: 18620390
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulating rhodopsin receptor activation by altering the pKa of the retinal Schiff base.
    Vogel R; Siebert F; Yan EC; Sakmar TP; Hirshfeld A; Sheves M
    J Am Chem Soc; 2006 Aug; 128(32):10503-12. PubMed ID: 16895417
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relevance of rhodopsin studies for GPCR activation.
    Deupi X
    Biochim Biophys Acta; 2014 May; 1837(5):674-82. PubMed ID: 24041646
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Linkage between the intramembrane H-bond network around aspartic acid 83 and the cytosolic environment of helix 8 in photoactivated rhodopsin.
    Lehmann N; Alexiev U; Fahmy K
    J Mol Biol; 2007 Mar; 366(4):1129-41. PubMed ID: 17196983
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The photobleaching sequence of a short-wavelength visual pigment.
    Kusnetzow A; Dukkipati A; Babu KR; Singh D; Vought BW; Knox BE; Birge RR
    Biochemistry; 2001 Jul; 40(26):7832-44. PubMed ID: 11425310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The structural basis of agonist-induced activation in constitutively active rhodopsin.
    Standfuss J; Edwards PC; D'Antona A; Fransen M; Xie G; Oprian DD; Schertler GF
    Nature; 2011 Mar; 471(7340):656-60. PubMed ID: 21389983
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Retinal dynamics during light activation of rhodopsin revealed by solid-state NMR spectroscopy.
    Brown MF; Salgado GF; Struts AV
    Biochim Biophys Acta; 2010 Feb; 1798(2):177-93. PubMed ID: 19716801
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tracking G-protein-coupled receptor activation using genetically encoded infrared probes.
    Ye S; Zaitseva E; Caltabiano G; Schertler GF; Sakmar TP; Deupi X; Vogel R
    Nature; 2010 Apr; 464(7293):1386-9. PubMed ID: 20383122
    [TBL] [Abstract][Full Text] [Related]  

  • 16. X-ray crystallographic studies for ligand-protein interaction changes in rhodopsin.
    Okada T
    Biochem Soc Trans; 2004 Nov; 32(Pt 5):738-41. PubMed ID: 15494002
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure around C6-C7 bond of the chromophore in bathorhodopsin: low-temperature spectroscopy of 6s-cis-locked bicyclic rhodopsin analogs.
    Imamoto Y; Sakai M; Katsuta Y; Wada A; Ito M; Shichida Y
    Biochemistry; 1996 May; 35(20):6257-62. PubMed ID: 8639566
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Difference in molecular structure of rod and cone visual pigments studied by Fourier transform infrared spectroscopy.
    Imai H; Hirano T; Kandori H; Terakita A; Shichida Y
    Biochemistry; 2001 Mar; 40(9):2879-86. PubMed ID: 11258899
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Difference in molecular properties between chicken green and rhodopsin as related to the functional difference between cone and rod photoreceptor cells.
    Imai H; Imamoto Y; Yoshizawa T; Shichida Y
    Biochemistry; 1995 Aug; 34(33):10525-31. PubMed ID: 7654707
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vibrational spectrum of the lumi intermediate in the room temperature rhodopsin photo-reaction.
    Ujj L; Jäger F; Atkinson GH
    Biophys J; 1998 Mar; 74(3):1492-501. PubMed ID: 9512045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.