These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 38459020)
1. MCL1 inhibition targets Myeloid Derived Suppressors Cells, promotes antitumor immunity and enhances the efficacy of immune checkpoint blockade. Mukherjee N; Katsnelson E; Brunetti TM; Michel K; Couts KL; Lambert KA; Robinson WA; McCarter MD; Norris DA; Tobin RP; Shellman YG Cell Death Dis; 2024 Mar; 15(3):198. PubMed ID: 38459020 [TBL] [Abstract][Full Text] [Related]
2. MCL1 inhibitors S63845/MIK665 plus Navitoclax synergistically kill difficult-to-treat melanoma cells. Mukherjee N; Skees J; Todd KJ; West DA; Lambert KA; Robinson WA; Amato CM; Couts KL; Van Gulick R; MacBeth M; Nassar K; Tan AC; Zhai Z; Fujita M; Bagby SM; Dart CR; Lambert JR; Norris DA; Shellman YG Cell Death Dis; 2020 Jun; 11(6):443. PubMed ID: 32513939 [TBL] [Abstract][Full Text] [Related]
3. Co-targeting bromodomain and extra-terminal proteins and MCL1 induces synergistic cell death in melanoma. Tseng HY; Dreyer J; Emran AA; Gunatilake D; Pirozyan M; Cullinane C; Dutton-Regester K; Rizos H; Hayward NK; McArthur G; Hersey P; Tiffen J; Gallagher S Int J Cancer; 2020 Oct; 147(8):2176-2189. PubMed ID: 32249419 [TBL] [Abstract][Full Text] [Related]
4. Targeting the vascular endothelial growth factor receptor-1 by the monoclonal antibody D16F7 to increase the activity of immune checkpoint inhibitors against cutaneous melanoma. Lacal PM; Atzori MG; Ruffini F; Scimeca M; Bonanno E; Cicconi R; Mattei M; Bernardini R; D'Atri S; Tentori L; Graziani G Pharmacol Res; 2020 Sep; 159():104957. PubMed ID: 32485280 [TBL] [Abstract][Full Text] [Related]
5. Exploiting MCL1 Dependency with Combination MEK + MCL1 Inhibitors Leads to Induction of Apoptosis and Tumor Regression in Nangia V; Siddiqui FM; Caenepeel S; Timonina D; Bilton SJ; Phan N; Gomez-Caraballo M; Archibald HL; Li C; Fraser C; Rigas D; Vajda K; Ferris LA; Lanuti M; Wright CD; Raskin KA; Cahill DP; Shin JH; Keyes C; Sequist LV; Piotrowska Z; Farago AF; Azzoli CG; Gainor JF; Sarosiek KA; Brown SP; Coxon A; Benes CH; Hughes PE; Hata AN Cancer Discov; 2018 Dec; 8(12):1598-1613. PubMed ID: 30254092 [TBL] [Abstract][Full Text] [Related]
6. Simultaneously Inhibiting BCL2 and MCL1 Is a Therapeutic Option for Patients with Advanced Melanoma. Mukherjee N; Amato CM; Skees J; Todd KJ; Lambert KA; Robinson WA; Van Gulick R; Weight RM; Dart CR; Tobin RP; McCarter MD; Fujita M; Norris DA; Shellman YG Cancers (Basel); 2020 Aug; 12(8):. PubMed ID: 32764384 [TBL] [Abstract][Full Text] [Related]
7. TAM Family Receptor Kinase Inhibition Reverses MDSC-Mediated Suppression and Augments Anti-PD-1 Therapy in Melanoma. Holtzhausen A; Harris W; Ubil E; Hunter DM; Zhao J; Zhang Y; Zhang D; Liu Q; Wang X; Graham DK; Frye SV; Earp HS Cancer Immunol Res; 2019 Oct; 7(10):1672-1686. PubMed ID: 31451482 [TBL] [Abstract][Full Text] [Related]
8. SOX2 promotes resistance of melanoma with PD-L1 high expression to T-cell-mediated cytotoxicity that can be reversed by SAHA. Wu R; Wang C; Li Z; Xiao J; Li C; Wang X; Kong P; Cao J; Huang F; Li Z; Huang Y; Chen Y; Li X; Yang D; Zhang H; Mai J; Feng G; Deng R; Zhu X J Immunother Cancer; 2020 Nov; 8(2):. PubMed ID: 33158915 [TBL] [Abstract][Full Text] [Related]
9. Targeting Inhibition of Accumulation and Function of Myeloid-Derived Suppressor Cells by Artemisinin via PI3K/AKT, mTOR, and MAPK Pathways Enhances Anti-PD-L1 Immunotherapy in Melanoma and Liver Tumors. Zhang M; Wang L; Liu W; Wang T; De Sanctis F; Zhu L; Zhang G; Cheng J; Cao Q; Zhou J; Tagliabue A; Bronte V; Yan D; Wan X; Yu G J Immunol Res; 2022; 2022():2253436. PubMed ID: 35785030 [TBL] [Abstract][Full Text] [Related]
10. MDM2 Inhibition Enhances Immune Checkpoint Inhibitor Efficacy by Increasing IL15 and MHC Class II Production. Langenbach M; Giesler S; Richtsfeld S; Costa-Pereira S; Rindlisbacher L; Wertheimer T; Braun LM; Andrieux G; Duquesne S; Pfeifer D; Woessner NM; Menssen HD; Taromi S; Duyster J; Börries M; Brummer T; Blazar BR; Minguet S; Turko P; Levesque MP; Becher B; Zeiser R Mol Cancer Res; 2023 Aug; 21(8):849-864. PubMed ID: 37071397 [TBL] [Abstract][Full Text] [Related]
11. Regulation of ROS in myeloid-derived suppressor cells through targeting fatty acid transport protein 2 enhanced anti-PD-L1 tumor immunotherapy. Adeshakin AO; Liu W; Adeshakin FO; Afolabi LO; Zhang M; Zhang G; Wang L; Li Z; Lin L; Cao Q; Yan D; Wan X Cell Immunol; 2021 Apr; 362():104286. PubMed ID: 33524739 [TBL] [Abstract][Full Text] [Related]
13. ILT3 (LILRB4) Promotes the Immunosuppressive Function of Tumor-Educated Human Monocytic Myeloid-Derived Suppressor Cells. Singh L; Muise ES; Bhattacharya A; Grein J; Javaid S; Stivers P; Zhang J; Qu Y; Joyce-Shaikh B; Loboda A; Zhang C; Meehl M; Chiang DY; Ranganath SH; Rosenzweig M; Brandish PE Mol Cancer Res; 2021 Apr; 19(4):702-716. PubMed ID: 33372059 [TBL] [Abstract][Full Text] [Related]
14. Effect of Immune Checkpoint Blockade on Myeloid-Derived Suppressor Cell Populations in Patients With Melanoma. Sun SH; Benner B; Savardekar H; Lapurga G; Good L; Abood D; Nagle E; Duggan M; Stiff A; DiVincenzo MJ; Suarez-Kelly LP; Campbell A; Yu L; Wesolowski R; Howard H; Shah H; Kendra K; Carson WE Front Immunol; 2021; 12():740890. PubMed ID: 34712230 [TBL] [Abstract][Full Text] [Related]
15. Histamine targets myeloid-derived suppressor cells and improves the anti-tumor efficacy of PD-1/PD-L1 checkpoint blockade. Grauers Wiktorin H; Nilsson MS; Kiffin R; Sander FE; Lenox B; Rydström A; Hellstrand K; Martner A Cancer Immunol Immunother; 2019 Feb; 68(2):163-174. PubMed ID: 30315349 [TBL] [Abstract][Full Text] [Related]
16. BH3-mimetic toolkit guides the respective use of BCL2 and MCL1 BH3-mimetics in myeloma treatment. Gomez-Bougie P; Maiga S; Tessoulin B; Bourcier J; Bonnet A; Rodriguez MS; Le Gouill S; Touzeau C; Moreau P; Pellat-Deceunynck C; Amiot M Blood; 2018 Dec; 132(25):2656-2669. PubMed ID: 30309889 [TBL] [Abstract][Full Text] [Related]
17. Targeting Myeloid-Derived Suppressor Cells to Enhance the Antitumor Efficacy of Immune Checkpoint Blockade Therapy. Li X; Zhong J; Deng X; Guo X; Lu Y; Lin J; Huang X; Wang C Front Immunol; 2021; 12():754196. PubMed ID: 35003065 [TBL] [Abstract][Full Text] [Related]
18. Enhancing immunotherapy response in melanoma: myeloid-derived suppressor cells as a therapeutic target. Ozbay Kurt FG; Lasser S; Arkhypov I; Utikal J; Umansky V J Clin Invest; 2023 Jul; 133(13):. PubMed ID: 37395271 [TBL] [Abstract][Full Text] [Related]
19. Potential therapeutic effect of low-dose paclitaxel in melanoma patients resistant to immune checkpoint blockade: A pilot study. Gebhardt C; Simon SCS; Weber R; Gries M; Mun DH; Reinhard R; Holland-Letz T; Umansky V; Utikal J Cell Immunol; 2021 Feb; 360():104274. PubMed ID: 33383383 [TBL] [Abstract][Full Text] [Related]
20. Melanoma patients with immune-related adverse events after immune checkpoint inhibitors are characterized by a distinct immunological phenotype of circulating T cells and M-MDSCs. Lepper A; Bitsch R; Özbay Kurt FG; Arkhypov I; Lasser S; Utikal J; Umansky V Oncoimmunology; 2023; 12(1):2247303. PubMed ID: 37593676 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]