BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 38459020)

  • 1. MCL1 inhibition targets Myeloid Derived Suppressors Cells, promotes antitumor immunity and enhances the efficacy of immune checkpoint blockade.
    Mukherjee N; Katsnelson E; Brunetti TM; Michel K; Couts KL; Lambert KA; Robinson WA; McCarter MD; Norris DA; Tobin RP; Shellman YG
    Cell Death Dis; 2024 Mar; 15(3):198. PubMed ID: 38459020
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MCL1 inhibitors S63845/MIK665 plus Navitoclax synergistically kill difficult-to-treat melanoma cells.
    Mukherjee N; Skees J; Todd KJ; West DA; Lambert KA; Robinson WA; Amato CM; Couts KL; Van Gulick R; MacBeth M; Nassar K; Tan AC; Zhai Z; Fujita M; Bagby SM; Dart CR; Lambert JR; Norris DA; Shellman YG
    Cell Death Dis; 2020 Jun; 11(6):443. PubMed ID: 32513939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Co-targeting bromodomain and extra-terminal proteins and MCL1 induces synergistic cell death in melanoma.
    Tseng HY; Dreyer J; Emran AA; Gunatilake D; Pirozyan M; Cullinane C; Dutton-Regester K; Rizos H; Hayward NK; McArthur G; Hersey P; Tiffen J; Gallagher S
    Int J Cancer; 2020 Oct; 147(8):2176-2189. PubMed ID: 32249419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeting the vascular endothelial growth factor receptor-1 by the monoclonal antibody D16F7 to increase the activity of immune checkpoint inhibitors against cutaneous melanoma.
    Lacal PM; Atzori MG; Ruffini F; Scimeca M; Bonanno E; Cicconi R; Mattei M; Bernardini R; D'Atri S; Tentori L; Graziani G
    Pharmacol Res; 2020 Sep; 159():104957. PubMed ID: 32485280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploiting MCL1 Dependency with Combination MEK + MCL1 Inhibitors Leads to Induction of Apoptosis and Tumor Regression in
    Nangia V; Siddiqui FM; Caenepeel S; Timonina D; Bilton SJ; Phan N; Gomez-Caraballo M; Archibald HL; Li C; Fraser C; Rigas D; Vajda K; Ferris LA; Lanuti M; Wright CD; Raskin KA; Cahill DP; Shin JH; Keyes C; Sequist LV; Piotrowska Z; Farago AF; Azzoli CG; Gainor JF; Sarosiek KA; Brown SP; Coxon A; Benes CH; Hughes PE; Hata AN
    Cancer Discov; 2018 Dec; 8(12):1598-1613. PubMed ID: 30254092
    [TBL] [Abstract][Full Text] [Related]  

  • 6. HSP90α induces immunosuppressive myeloid cells in melanoma via TLR4 signaling.
    Arkhypov I; Özbay Kurt FG; Bitsch R; Novak D; Petrova V; Lasser S; Hielscher T; Groth C; Lepper A; Hu X; Li W; Utikal J; Altevogt P; Umansky V
    J Immunother Cancer; 2022 Sep; 10(9):. PubMed ID: 36113897
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tyrosine Kinase Inhibitors Increase MCL1 Degradation and in Combination with BCLXL/BCL2 Inhibitors Drive Prostate Cancer Apoptosis.
    Arai S; Jonas O; Whitman MA; Corey E; Balk SP; Chen S
    Clin Cancer Res; 2018 Nov; 24(21):5458-5470. PubMed ID: 30021909
    [No Abstract]   [Full Text] [Related]  

  • 8. Simultaneously Inhibiting BCL2 and MCL1 Is a Therapeutic Option for Patients with Advanced Melanoma.
    Mukherjee N; Amato CM; Skees J; Todd KJ; Lambert KA; Robinson WA; Van Gulick R; Weight RM; Dart CR; Tobin RP; McCarter MD; Fujita M; Norris DA; Shellman YG
    Cancers (Basel); 2020 Aug; 12(8):. PubMed ID: 32764384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TAM Family Receptor Kinase Inhibition Reverses MDSC-Mediated Suppression and Augments Anti-PD-1 Therapy in Melanoma.
    Holtzhausen A; Harris W; Ubil E; Hunter DM; Zhao J; Zhang Y; Zhang D; Liu Q; Wang X; Graham DK; Frye SV; Earp HS
    Cancer Immunol Res; 2019 Oct; 7(10):1672-1686. PubMed ID: 31451482
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SOX2 promotes resistance of melanoma with PD-L1 high expression to T-cell-mediated cytotoxicity that can be reversed by SAHA.
    Wu R; Wang C; Li Z; Xiao J; Li C; Wang X; Kong P; Cao J; Huang F; Li Z; Huang Y; Chen Y; Li X; Yang D; Zhang H; Mai J; Feng G; Deng R; Zhu X
    J Immunother Cancer; 2020 Nov; 8(2):. PubMed ID: 33158915
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeting Inhibition of Accumulation and Function of Myeloid-Derived Suppressor Cells by Artemisinin via PI3K/AKT, mTOR, and MAPK Pathways Enhances Anti-PD-L1 Immunotherapy in Melanoma and Liver Tumors.
    Zhang M; Wang L; Liu W; Wang T; De Sanctis F; Zhu L; Zhang G; Cheng J; Cao Q; Zhou J; Tagliabue A; Bronte V; Yan D; Wan X; Yu G
    J Immunol Res; 2022; 2022():2253436. PubMed ID: 35785030
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MDM2 Inhibition Enhances Immune Checkpoint Inhibitor Efficacy by Increasing IL15 and MHC Class II Production.
    Langenbach M; Giesler S; Richtsfeld S; Costa-Pereira S; Rindlisbacher L; Wertheimer T; Braun LM; Andrieux G; Duquesne S; Pfeifer D; Woessner NM; Menssen HD; Taromi S; Duyster J; Börries M; Brummer T; Blazar BR; Minguet S; Turko P; Levesque MP; Becher B; Zeiser R
    Mol Cancer Res; 2023 Aug; 21(8):849-864. PubMed ID: 37071397
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of ROS in myeloid-derived suppressor cells through targeting fatty acid transport protein 2 enhanced anti-PD-L1 tumor immunotherapy.
    Adeshakin AO; Liu W; Adeshakin FO; Afolabi LO; Zhang M; Zhang G; Wang L; Li Z; Lin L; Cao Q; Yan D; Wan X
    Cell Immunol; 2021 Apr; 362():104286. PubMed ID: 33524739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeting TREM1 augments antitumor T cell immunity by inhibiting myeloid-derived suppressor cells and restraining anti-PD-1 resistance.
    Ajith A; Mamouni K; Horuzsko DD; Musa A; Dzutsev AK; Fang JR; Chadli A; Zhu X; Lebedyeva I; Trinchieri G; Horuzsko A
    J Clin Invest; 2023 Nov; 133(21):. PubMed ID: 37651197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ILT3 (LILRB4) Promotes the Immunosuppressive Function of Tumor-Educated Human Monocytic Myeloid-Derived Suppressor Cells.
    Singh L; Muise ES; Bhattacharya A; Grein J; Javaid S; Stivers P; Zhang J; Qu Y; Joyce-Shaikh B; Loboda A; Zhang C; Meehl M; Chiang DY; Ranganath SH; Rosenzweig M; Brandish PE
    Mol Cancer Res; 2021 Apr; 19(4):702-716. PubMed ID: 33372059
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Immune Checkpoint Blockade on Myeloid-Derived Suppressor Cell Populations in Patients With Melanoma.
    Sun SH; Benner B; Savardekar H; Lapurga G; Good L; Abood D; Nagle E; Duggan M; Stiff A; DiVincenzo MJ; Suarez-Kelly LP; Campbell A; Yu L; Wesolowski R; Howard H; Shah H; Kendra K; Carson WE
    Front Immunol; 2021; 12():740890. PubMed ID: 34712230
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Histamine targets myeloid-derived suppressor cells and improves the anti-tumor efficacy of PD-1/PD-L1 checkpoint blockade.
    Grauers Wiktorin H; Nilsson MS; Kiffin R; Sander FE; Lenox B; Rydström A; Hellstrand K; Martner A
    Cancer Immunol Immunother; 2019 Feb; 68(2):163-174. PubMed ID: 30315349
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeting Myeloid-Derived Suppressor Cells to Enhance the Antitumor Efficacy of Immune Checkpoint Blockade Therapy.
    Li X; Zhong J; Deng X; Guo X; Lu Y; Lin J; Huang X; Wang C
    Front Immunol; 2021; 12():754196. PubMed ID: 35003065
    [TBL] [Abstract][Full Text] [Related]  

  • 19. BH3-mimetic toolkit guides the respective use of BCL2 and MCL1 BH3-mimetics in myeloma treatment.
    Gomez-Bougie P; Maiga S; Tessoulin B; Bourcier J; Bonnet A; Rodriguez MS; Le Gouill S; Touzeau C; Moreau P; Pellat-Deceunynck C; Amiot M
    Blood; 2018 Dec; 132(25):2656-2669. PubMed ID: 30309889
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potential therapeutic effect of low-dose paclitaxel in melanoma patients resistant to immune checkpoint blockade: A pilot study.
    Gebhardt C; Simon SCS; Weber R; Gries M; Mun DH; Reinhard R; Holland-Letz T; Umansky V; Utikal J
    Cell Immunol; 2021 Feb; 360():104274. PubMed ID: 33383383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.