These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 38459025)
21. An Organic Afterglow Protheranostic Nanoassembly. He S; Xie C; Jiang Y; Pu K Adv Mater; 2019 Aug; 31(32):e1902672. PubMed ID: 31206855 [TBL] [Abstract][Full Text] [Related]
22. Rational design of pH-activated upconversion luminescent nanoprobes for bioimaging of tumor acidic microenvironment and the enhancement of photothermal therapy. Tan B; Zhao C; Wang J; Tiemuer A; Zhang Y; Yu H; Liu Y Acta Biomater; 2023 Jan; 155():554-563. PubMed ID: 36087865 [TBL] [Abstract][Full Text] [Related]
23. Ratiometric afterglow luminescent nanoplatform enables reliable quantification and molecular imaging. Liu Y; Teng L; Lyu Y; Song G; Zhang XB; Tan W Nat Commun; 2022 Apr; 13(1):2216. PubMed ID: 35468901 [TBL] [Abstract][Full Text] [Related]
24. Enhanced Blue Afterglow through Molecular Fusion for Bio-applications. Su X; Kong X; Sun K; Liu Q; Pei Y; Hu D; Xu M; Feng W; Li F Angew Chem Int Ed Engl; 2022 Jul; 61(27):e202201630. PubMed ID: 35353427 [TBL] [Abstract][Full Text] [Related]
25. Engineering Persistent Luminescence Nanoparticles for Biological Applications: From Biosensing/Bioimaging to Theranostics. Sun SK; Wang HF; Yan XP Acc Chem Res; 2018 May; 51(5):1131-1143. PubMed ID: 29664602 [TBL] [Abstract][Full Text] [Related]
26. Coloring Afterglow Nanoparticles for High-Contrast Time-Gating-Free Multiplex Luminescence Imaging. Li Z; Yu N; Zhou J; Li Y; Zhang Y; Huang L; Huang K; Zhao Y; Kelmar S; Yang J; Han G Adv Mater; 2020 Dec; 32(49):e2003881. PubMed ID: 33145880 [TBL] [Abstract][Full Text] [Related]
27. Organic Afterglow Nanoparticles in Bioapplications. Shen H; Liao S; Li Z; Wang Y; Huan S; Zhang XB; Song G Chemistry; 2023 Jul; 29(42):e202301209. PubMed ID: 37222343 [TBL] [Abstract][Full Text] [Related]
28. Self-evolving persistent luminescence nanoprobes for autofluorescence-free ratiometric imaging and on-demand enhanced chemodynamic therapy of pulmonary metastatic tumors. Zhao X; Gu TY; Xia YP; Gao XM; Chen LJ; Yan LX; Yan XP Biomater Sci; 2024 Jun; 12(12):3229-3237. PubMed ID: 38764365 [TBL] [Abstract][Full Text] [Related]
29. Molecular afterglow imaging with bright, biodegradable polymer nanoparticles. Miao Q; Xie C; Zhen X; Lyu Y; Duan H; Liu X; Jokerst JV; Pu K Nat Biotechnol; 2017 Nov; 35(11):1102-1110. PubMed ID: 29035373 [TBL] [Abstract][Full Text] [Related]
30. Cyclic Amplification of the Afterglow Luminescent Nanoreporter Enables the Prediction of Anti-cancer Efficiency. Wang Y; Song G; Liao S; Qin Q; Zhao Y; Shi L; Guan K; Gong X; Wang P; Yin X; Chen Q; Zhang XB Angew Chem Int Ed Engl; 2021 Sep; 60(36):19779-19789. PubMed ID: 34233057 [TBL] [Abstract][Full Text] [Related]
31. Chen W; Jiang Y; Zhao M; An Y; Zhang Y; Yang L; Miao Q Anal Chem; 2023 Mar; 95(12):5340-5345. PubMed ID: 36920345 [TBL] [Abstract][Full Text] [Related]
32. Hydrogen Peroxide-Activatable Nanoparticles for Luminescence Imaging and An H; Guo C; Li D; Liu R; Xu X; Guo J; Ding J; Li J; Chen W; Zhang J ACS Appl Mater Interfaces; 2020 Apr; 12(15):17230-17243. PubMed ID: 32193923 [TBL] [Abstract][Full Text] [Related]
33. Magnetic Semiconductor Gd-Doping CuS Nanoparticles as Activatable Nanoprobes for Bimodal Imaging and Targeted Photothermal Therapy of Gastric Tumors. Shi H; Sun Y; Yan R; Liu S; Zhu L; Liu S; Feng Y; Wang P; He J; Zhou Z; Ye D Nano Lett; 2019 Feb; 19(2):937-947. PubMed ID: 30688465 [TBL] [Abstract][Full Text] [Related]
34. Activatable Multifunctional Persistent Luminescence Nanoparticle/Copper Sulfide Nanoprobe for in Vivo Luminescence Imaging-Guided Photothermal Therapy. Chen LJ; Sun SK; Wang Y; Yang CX; Wu SQ; Yan XP ACS Appl Mater Interfaces; 2016 Dec; 8(48):32667-32674. PubMed ID: 27934189 [TBL] [Abstract][Full Text] [Related]
35. Dual-Locked Probe with Activatable Sonoafterglow Luminescence for Precise Imaging of MET-Induced Liver Injury. Yao Z; Xu F; Wu R; Wang X; Guo M; Wang S; Yang K; Du W; Song J Anal Chem; 2024 Sep; 96(37):15031-15041. PubMed ID: 39226180 [TBL] [Abstract][Full Text] [Related]
36. Activatable Lanthanide Nanoprobes with Dye-Sensitized Second Near-Infrared Luminescence for Huang J; Zhang X; Li S; Qu F; Huang B; Cui R; Liu Y; Hu W; Yang X; Zhang Y Anal Chem; 2023 Feb; 95(7):3761-3768. PubMed ID: 36757879 [TBL] [Abstract][Full Text] [Related]
37. Dual-Acceptor-Based Upconversion Luminescence Nanosensor with Enhanced Quenching Efficiency for in Situ Imaging and Quantification of MicroRNA in Living Cells. Yang L; Zhang K; Bi S; Zhu JJ ACS Appl Mater Interfaces; 2019 Oct; 11(42):38459-38466. PubMed ID: 31593426 [TBL] [Abstract][Full Text] [Related]
38. Semiconducting Photosensitizer-Incorporated Copolymers as Near-Infrared Afterglow Nanoagents for Tumor Imaging. Cui D; Xie C; Li J; Lyu Y; Pu K Adv Healthc Mater; 2018 Sep; 7(18):e1800329. PubMed ID: 30080302 [TBL] [Abstract][Full Text] [Related]
39. Mn Ding D; Feng Y; Qin R; Li S; Chen L; Jing J; Zhang C; Sun W; Li Y; Chen X; Chen H Theranostics; 2021; 11(15):7439-7449. PubMed ID: 34158859 [TBL] [Abstract][Full Text] [Related]
40. An Activatable Afterglow/MRI Bimodal Nanoprobe with Fast Response to H Zeng W; Wu L; Ishigaki Y; Harimoto T; Hu Y; Sun Y; Wang Y; Suzuki T; Chen HY; Ye D Angew Chem Int Ed Engl; 2022 Jan; 61(4):e202111759. PubMed ID: 34791772 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]