These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 38459025)

  • 41. Nitric Oxide-Activated "Dual-Key-One-Lock" Nanoprobe for in Vivo Molecular Imaging and High-Specificity Cancer Therapy.
    Teng L; Song G; Liu Y; Han X; Li Z; Wang Y; Huan S; Zhang XB; Tan W
    J Am Chem Soc; 2019 Aug; 141(34):13572-13581. PubMed ID: 31370392
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Near-Infrared Afterglow ONOO
    Zhang L; Wang YC; Liao Y; Zhang Q; Liu X; Zhu D; Feng H; Bryce MR; Ren L
    ACS Appl Mater Interfaces; 2023 Oct; 15(39):45574-45584. PubMed ID: 37729542
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A novel afterglow nanoreporter for monitoring cancer therapy.
    Liao S; Wang Y; Li Z; Zhang Y; Yin X; Huan S; Zhang XB; Liu S; Song G
    Theranostics; 2022; 12(16):6883-6897. PubMed ID: 36276646
    [No Abstract]   [Full Text] [Related]  

  • 44. Five-nanometer ZnSn
    Li JL; Shi JP; Wang CC; Li PH; Yu ZF; Zhang HW
    Nanoscale; 2017 Jun; 9(25):8631-8638. PubMed ID: 28608898
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Intensely red-emitting luminescent upconversion nanoparticles for deep-tissue multimodal bioimaging.
    Deng H; Huang S; Xu C
    Talanta; 2018 Jul; 184():461-467. PubMed ID: 29674069
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Photooxidation triggered ultralong afterglow in carbon nanodots.
    Zheng GS; Shen CL; Niu CY; Lou Q; Jiang TC; Li PF; Shi XJ; Song RW; Deng Y; Lv CF; Liu KK; Zang JH; Cheng Z; Dong L; Shan CX
    Nat Commun; 2024 Mar; 15(1):2365. PubMed ID: 38491012
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Synergistic dual-modality in vivo upconversion luminescence/X-ray imaging and tracking of amine-functionalized NaYbF(4):Er nanoprobes.
    Yi Z; Zeng S; Lu W; Wang H; Rao L; Liu H; Hao J
    ACS Appl Mater Interfaces; 2014 Mar; 6(6):3839-46. PubMed ID: 24597514
    [TBL] [Abstract][Full Text] [Related]  

  • 48. An aggregation-induced emission dye-powered afterglow luminogen for tumor imaging.
    Xu Y; Yang W; Yao D; Bian K; Zeng W; Liu K; Wang D; Zhang B
    Chem Sci; 2020 Jan; 11(2):419-428. PubMed ID: 32190262
    [TBL] [Abstract][Full Text] [Related]  

  • 49. High-Specificity In Vivo Tumor Imaging Using Bioorthogonal NIR-IIb Nanoparticles.
    Luo Z; Hu D; Gao D; Yi Z; Zheng H; Sheng Z; Liu X
    Adv Mater; 2021 Dec; 33(49):e2102950. PubMed ID: 34617645
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Molecular substrates for the construction of afterglow imaging probes in disease diagnosis and treatment.
    Wang X; Pu K
    Chem Soc Rev; 2023 Jul; 52(14):4549-4566. PubMed ID: 37350132
    [TBL] [Abstract][Full Text] [Related]  

  • 51. In Vivo Repeatedly Activated Persistent Luminescence Nanoparticles by Radiopharmaceuticals for Long-Lasting Tumor Optical Imaging.
    Liu N; Shi J; Wang Q; Guo J; Hou Z; Su X; Zhang H; Sun X
    Small; 2020 Jul; 16(26):e2001494. PubMed ID: 32510845
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Peptide-enhanced tumor accumulation of upconversion nanoparticles for sensitive upconversion luminescence/magnetic resonance dual-mode bioimaging of colorectal tumors.
    Li X; Liu L; Fu Y; Chen H; Abualrejal MMA; Zhang H; Wang Z; Zhang H
    Acta Biomater; 2020 Mar; 104():167-175. PubMed ID: 31923719
    [TBL] [Abstract][Full Text] [Related]  

  • 53. ZnS:Cu,Co water-soluble afterglow nanoparticles: synthesis, luminescence and potential applications.
    Ma L; Chen W
    Nanotechnology; 2010 Sep; 21(38):385604. PubMed ID: 20798470
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Noninvasive Imaging of Tumor Glycolysis and Chemotherapeutic Resistance via De Novo Design of Molecular Afterglow Scaffold.
    Lei L; Yang F; Meng X; Xu L; Liang P; Ma Y; Dong Z; Wang Y; Zhang XB; Song G
    J Am Chem Soc; 2023 Nov; 145(44):24386-24400. PubMed ID: 37883689
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Modulating near-infrared persistent luminescence of core-shell nanoplatform for imaging of glutathione in tumor mouse model.
    Feng Y; Zhang L; Liu R; Lv Y
    Biosens Bioelectron; 2019 Nov; 144():111671. PubMed ID: 31513961
    [TBL] [Abstract][Full Text] [Related]  

  • 56. X-ray/red-light excited ZGGO:Cr,Nd nanoprobes for NIR-I/II afterglow imaging.
    Jiang R; Yang J; Meng Y; Yan D; Liu C; Xu C; Liu Y
    Dalton Trans; 2020 May; 49(18):6074-6083. PubMed ID: 32319478
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Ultralong Phosphorescence of Water-Soluble Organic Nanoparticles for In Vivo Afterglow Imaging.
    Zhen X; Tao Y; An Z; Chen P; Xu C; Chen R; Huang W; Pu K
    Adv Mater; 2017 Sep; 29(33):. PubMed ID: 28657119
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Kiwifruit-like Persistent Luminescent Nanoparticles with High-Performance and in Situ Activable Near-Infrared Persistent Luminescence for Long-Term in Vivo Bioimaging.
    Lin XH; Song L; Chen S; Chen XF; Wei JJ; Li J; Huang G; Yang HH
    ACS Appl Mater Interfaces; 2017 Nov; 9(47):41181-41187. PubMed ID: 29111643
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A turn-on fluorescence sensor for rapid sensing of ATP based on luminescence resonance energy transfer between upconversion nanoparticles and Cy3 in vivo or vitro.
    Xu J; Li H; Arumugam SS; Rong Y; Wang P; Chen Q
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Jan; 265():120341. PubMed ID: 34492515
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Fabrication of an activatable hybrid persistent luminescence nanoprobe for background-free bioimaging-guided investigation of food-borne aflatoxin
    Liu JM; Yuan XY; Liu HL; Cheng D; Wang S
    RSC Adv; 2018 Aug; 8(50):28414-28420. PubMed ID: 35542489
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.