These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 38459037)
21. Porous Ti Hong S; El-Demellawi JK; Lei Y; Liu Z; Marzooqi FA; Arafat HA; Alshareef HN ACS Nano; 2022 Jan; 16(1):792-800. PubMed ID: 35000386 [TBL] [Abstract][Full Text] [Related]
22. Preanchoring Enabled Directional Modification of Atomically Thin Membrane for High-Performance Osmotic Energy Generation. Liu Y; Zhang S; Song R; Zeng H; Wang L Nano Lett; 2024 Jan; 24(1):26-34. PubMed ID: 38117701 [TBL] [Abstract][Full Text] [Related]
23. Advances in Two-Dimensional Ion-Selective Membranes: Bridging Nanoscale Insights to Industrial-Scale Salinity Gradient Energy Harvesting. Ma X; Neek-Amal M; Sun C ACS Nano; 2024 May; 18(20):12610-12638. PubMed ID: 38733357 [TBL] [Abstract][Full Text] [Related]
24. Light-Enhanced Osmotic Energy Harvester Using Photoactive Porphyrin Metal-Organic Framework Membranes. Li ZQ; Zhu GL; Mo RJ; Wu MY; Ding XL; Huang LQ; Wu ZQ; Xia XH Angew Chem Int Ed Engl; 2022 May; 61(22):e202202698. PubMed ID: 35293120 [TBL] [Abstract][Full Text] [Related]
25. Optimizing Nanofluidic Energy Harvesting in Synthetic Clay-based Membranes by Annealing Treatment. Zavala-Galindo Y; Yang G; Zang H; Lei W; Liu D Adv Sci (Weinh); 2024 Aug; 11(31):e2400233. PubMed ID: 38885420 [TBL] [Abstract][Full Text] [Related]
26. Janus Metal-Organic Framework Membranes Boosting the Osmotic Energy Harvesting. Li ZQ; Zhu GL; Mo RJ; Wu MY; Ding XL; Huang LQ; Wu ZQ; Xia XH ACS Appl Mater Interfaces; 2023 May; 15(19):23922-23930. PubMed ID: 37145874 [TBL] [Abstract][Full Text] [Related]
27. Photo-controllable Ion-Gated Metal-Organic Framework MIL-53 Sub-nanochannels for Efficient Osmotic Energy Generation. Liu Y; Chen Y; Guo Y; Wang X; Ding S; Sun X; Wang H; Zhu Y; Jiang L ACS Nano; 2022 Oct; 16(10):16343-16352. PubMed ID: 36226827 [TBL] [Abstract][Full Text] [Related]
28. Interfacial Super-Assembly of Vacancy Engineered Ultrathin-Nanosheets Toward Nanochannels for Smart Ion Transport and Salinity Gradient Power Conversion. Awati A; Yang R; Shi T; Zhou S; Zhang X; Zeng H; Lv Y; Liang K; Xie L; Zhu D; Liu M; Kong B Angew Chem Int Ed Engl; 2024 Aug; 63(32):e202407491. PubMed ID: 38735853 [TBL] [Abstract][Full Text] [Related]
29. Sandwich "Ion Pool"-Structured Power Gating for Salinity Gradient Generation Devices. Fu L; Wang Y; Jiang J; Lu B; Zhai J ACS Appl Mater Interfaces; 2021 Jul; 13(29):35197-35206. PubMed ID: 34266231 [TBL] [Abstract][Full Text] [Related]
30. Horizontally Asymmetric Nanochannels of Graphene Oxide Membranes for Efficient Osmotic Energy Harvesting. Bang KR; Kwon C; Lee H; Kim S; Cho ES ACS Nano; 2023 Jun; 17(11):10000-10009. PubMed ID: 37196224 [TBL] [Abstract][Full Text] [Related]
31. Essence of the Enhanced Osmotic Energy Conversion in a Covalent Organic Framework Monolayer. Huang Z; Fang M; Tu B; Yang J; Yan Z; Alemayehu HG; Tang Z; Li L ACS Nano; 2022 Oct; 16(10):17149-17156. PubMed ID: 36165566 [TBL] [Abstract][Full Text] [Related]
32. An Ionic Diode Covalent Organic Framework Membrane for Efficient Osmotic Energy Conversion. Cao L; Chen IC; Liu X; Li Z; Zhou Z; Lai Z ACS Nano; 2022 Nov; 16(11):18910-18920. PubMed ID: 36283039 [TBL] [Abstract][Full Text] [Related]
33. Bio-inspired Double Angstrom-Scale Confinement in Ti-deficient Ti Liu C; Ye C; Zhang T; Tang J; Mao K; Chen L; Xue L; Sun J; Zhang W; Wang X; Xiong P; Wang G; Zhu J Angew Chem Int Ed Engl; 2024 Jan; 63(4):e202315947. PubMed ID: 38059770 [TBL] [Abstract][Full Text] [Related]
34. Polyoxometalate-based plasmonic electron sponge membrane for nanofluidic osmotic energy conversion. Zhu C; Xu L; Liu Y; Liu J; Wang J; Sun H; Lan YQ; Wang C Nat Commun; 2024 May; 15(1):4213. PubMed ID: 38760369 [TBL] [Abstract][Full Text] [Related]
35. The Combination of 2D Layered Graphene Oxide and 3D Porous Cellulose Heterogeneous Membranes for Nanofluidic Osmotic Power Generation. Jia P; Du X; Chen R; Zhou J; Agostini M; Sun J; Xiao L Molecules; 2021 Sep; 26(17):. PubMed ID: 34500776 [TBL] [Abstract][Full Text] [Related]
36. Confined Ionic-Liquid-Mediated Cation Diffusion through Layered Membranes for High-Performance Osmotic Energy Conversion. Hu Y; Xiao H; Fu L; Liu P; Wu Y; Chen W; Qian Y; Zhou S; Kong XY; Zhang Z; Jiang L; Wen L Adv Mater; 2023 Jun; 35(24):e2301285. PubMed ID: 36930971 [TBL] [Abstract][Full Text] [Related]
37. High-performance ionic diode membrane for salinity gradient power generation. Gao J; Guo W; Feng D; Wang H; Zhao D; Jiang L J Am Chem Soc; 2014 Sep; 136(35):12265-72. PubMed ID: 25137214 [TBL] [Abstract][Full Text] [Related]
38. Highly Efficient Conversion of Salinity Difference to Electricity in Nanofluidic Channels Boosted by Variable Thickness Polyelectrolyte Coating. Nekoubin N; Sadeghi A; Chakraborty S Langmuir; 2024 May; 40(19):10171-10183. PubMed ID: 38698764 [TBL] [Abstract][Full Text] [Related]
39. Two-Dimensional Cu-Porphyrin Metal-Organic Framework Nanosheet-Supported Flaky TiO Zhu W; Xia Z; Shi B; Lü C Langmuir; 2023 Nov; 39(44):15665-15675. PubMed ID: 37898919 [TBL] [Abstract][Full Text] [Related]
40. Two-Dimensional Membranes with Highly Charged Nanochannels for Osmotic Energy Conversion. Qian Y; Liu D; Yang G; Chen J; Ma Y; Wang L; Wang X; Lei W ChemSusChem; 2022 Oct; 15(19):e202200933. PubMed ID: 35853838 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]