These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 38459265)

  • 1. Orthogonal neural encoding of targets and distractors supports multivariate cognitive control.
    Ritz H; Shenhav A
    Nat Hum Behav; 2024 May; 8(5):945-961. PubMed ID: 38459265
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural conflict-control mechanisms improve memory for target stimuli.
    Krebs RM; Boehler CN; De Belder M; Egner T
    Cereb Cortex; 2015 Mar; 25(3):833-43. PubMed ID: 24108799
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatio-temporal patterns of cognitive control revealed with simultaneous electroencephalography and functional magnetic resonance imaging.
    Hinault T; Larcher K; Zazubovits N; Gotman J; Dagher A
    Hum Brain Mapp; 2019 Jan; 40(1):80-97. PubMed ID: 30259592
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing the Neural Mechanisms for Distractor Filtering and Their History-Contingent Modulation by Means of TMS.
    Lega C; Ferrante O; Marini F; Santandrea E; Cattaneo L; Chelazzi L
    J Neurosci; 2019 Sep; 39(38):7591-7603. PubMed ID: 31387915
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural evidence for attentional capture by salient distractors.
    Lin R; Meng X; Chen F; Li X; Jensen O; Theeuwes J; Wang B
    Nat Hum Behav; 2024 May; 8(5):932-944. PubMed ID: 38538771
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Common regions of dorsal anterior cingulate and prefrontal-parietal cortices provide attentional control of distracters varying in emotionality and visibility.
    Luo Q; Mitchell D; Jones M; Mondillo K; Vythilingam M; Blair RJ
    Neuroimage; 2007 Nov; 38(3):631-9. PubMed ID: 17889565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinct Frontoparietal Networks Underlying Attentional Effort and Cognitive Control.
    Berry AS; Sarter M; Lustig C
    J Cogn Neurosci; 2017 Jul; 29(7):1212-1225. PubMed ID: 28253080
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cognitive Effort Modulates Connectivity between Dorsal Anterior Cingulate Cortex and Task-Relevant Cortical Areas.
    Aben B; Buc Calderon C; Van den Bussche E; Verguts T
    J Neurosci; 2020 May; 40(19):3838-3848. PubMed ID: 32273486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bottom-Up and Top-Down Factors Differentially Influence Stimulus Representations Across Large-Scale Attentional Networks.
    Long NM; Kuhl BA
    J Neurosci; 2018 Mar; 38(10):2495-2504. PubMed ID: 29437930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A domain-general brain network underlying emotional and cognitive interference processing: evidence from coordinate-based and functional connectivity meta-analyses.
    Chen T; Becker B; Camilleri J; Wang L; Yu S; Eickhoff SB; Feng C
    Brain Struct Funct; 2018 Nov; 223(8):3813-3840. PubMed ID: 30083997
    [TBL] [Abstract][Full Text] [Related]  

  • 11. What makes your brain suggestible? Hypnotizability is associated with differential brain activity during attention outside hypnosis.
    Cojan Y; Piguet C; Vuilleumier P
    Neuroimage; 2015 Aug; 117():367-74. PubMed ID: 26049149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diurnal patterns of activity of the orienting and executive attention neuronal networks in subjects performing a Stroop-like task: a functional magnetic resonance imaging study.
    Marek T; Fafrowicz M; Golonka K; Mojsa-Kaja J; Oginska H; Tucholska K; Urbanik A; Beldzik E; Domagalik A
    Chronobiol Int; 2010 Jul; 27(5):945-58. PubMed ID: 20636208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visual Short-Term Memory Activity in Parietal Lobe Reflects Cognitive Processes beyond Attentional Selection.
    Sheremata SL; Somers DC; Shomstein S
    J Neurosci; 2018 Feb; 38(6):1511-1519. PubMed ID: 29311140
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distinct roles of the intraparietal sulcus and temporoparietal junction in attentional capture from distractor features: An individual differences approach.
    Painter DR; Dux PE; Mattingley JB
    Neuropsychologia; 2015 Jul; 74():50-62. PubMed ID: 25724234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuous and discrete representations of feature-based attentional priority in human frontoparietal network.
    Gong M; Liu T
    Cogn Neurosci; 2020 Jan; 11(1-2):47-59. PubMed ID: 30922203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ignoring the elephant in the room: a neural circuit to downregulate salience.
    Mevorach C; Hodsoll J; Allen H; Shalev L; Humphreys G
    J Neurosci; 2010 Apr; 30(17):6072-9. PubMed ID: 20427665
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Task Encoding across the Multiple Demand Cortex Is Consistent with a Frontoparietal and Cingulo-Opercular Dual Networks Distinction.
    Crittenden BM; Mitchell DJ; Duncan J
    J Neurosci; 2016 Jun; 36(23):6147-55. PubMed ID: 27277793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the neural basis of focused and divided attention.
    Nebel K; Wiese H; Stude P; de Greiff A; Diener HC; Keidel M
    Brain Res Cogn Brain Res; 2005 Dec; 25(3):760-76. PubMed ID: 16337110
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Echoes of the brain within the posterior cingulate cortex.
    Leech R; Braga R; Sharp DJ
    J Neurosci; 2012 Jan; 32(1):215-22. PubMed ID: 22219283
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Causal Interactions Within a Frontal-Cingulate-Parietal Network During Cognitive Control: Convergent Evidence from a Multisite-Multitask Investigation.
    Cai W; Chen T; Ryali S; Kochalka J; Li CS; Menon V
    Cereb Cortex; 2016 May; 26(5):2140-53. PubMed ID: 25778346
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.