These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 38459719)

  • 1. Algorithmic Identification of Treatment-Emergent Adverse Events From Clinical Notes Using Large Language Models: A Pilot Study in Inflammatory Bowel Disease.
    Silverman AL; Sushil M; Bhasuran B; Ludwig D; Buchanan J; Racz R; Parakala M; El-Kamary S; Ahima O; Belov A; Choi L; Billings M; Li Y; Habal N; Liu Q; Tiwari J; Butte AJ; Rudrapatna VA
    Clin Pharmacol Ther; 2024 Jun; 115(6):1391-1399. PubMed ID: 38459719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Algorithmic identification of treatment-emergent adverse events from clinical notes using large language models: a pilot study in inflammatory bowel disease.
    Silverman AL; Sushil M; Bhasuran B; Ludwig D; Buchanan J; Racz R; Parakala M; El-Kamary S; Ahima O; Belov A; Choi L; Billings M; Li Y; Habal N; Liu Q; Tiwari J; Butte AJ; Rudrapatna VA
    medRxiv; 2023 Sep; ():. PubMed ID: 37732220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CACER: Clinical concept Annotations for Cancer Events and Relations.
    Fu YV; Ramachandran GK; Halwani A; McInnes BT; Xia F; Lybarger K; Yetisgen M; Uzuner Ö
    J Am Med Inform Assoc; 2024 Nov; 31(11):2583-2594. PubMed ID: 39225779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BERT-based language model for accurate drug adverse event extraction from social media: implementation, evaluation, and contributions to pharmacovigilance practices.
    Dong F; Guo W; Liu J; Patterson TA; Hong H
    Front Public Health; 2024; 12():1392180. PubMed ID: 38716250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bidirectional Encoder Representations from Transformers-like large language models in patient safety and pharmacovigilance: A comprehensive assessment of causal inference implications.
    Wang X; Xu X; Liu Z; Tong W
    Exp Biol Med (Maywood); 2023 Nov; 248(21):1908-1917. PubMed ID: 38084745
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A large language model-based generative natural language processing framework fine-tuned on clinical notes accurately extracts headache frequency from electronic health records.
    Chiang CC; Luo M; Dumkrieger G; Trivedi S; Chen YC; Chao CJ; Schwedt TJ; Sarker A; Banerjee I
    Headache; 2024 Apr; 64(4):400-409. PubMed ID: 38525734
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Classifying social determinants of health from unstructured electronic health records using deep learning-based natural language processing.
    Han S; Zhang RF; Shi L; Richie R; Liu H; Tseng A; Quan W; Ryan N; Brent D; Tsui FR
    J Biomed Inform; 2022 Mar; 127():103984. PubMed ID: 35007754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fine-Tuning Bidirectional Encoder Representations From Transformers (BERT)-Based Models on Large-Scale Electronic Health Record Notes: An Empirical Study.
    Li F; Jin Y; Liu W; Rawat BPS; Cai P; Yu H
    JMIR Med Inform; 2019 Sep; 7(3):e14830. PubMed ID: 31516126
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the creation of a clinical gold standard corpus in Spanish: Mining adverse drug reactions.
    Oronoz M; Gojenola K; Pérez A; de Ilarraza AD; Casillas A
    J Biomed Inform; 2015 Aug; 56():318-32. PubMed ID: 26141794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automatic Extraction of Comprehensive Drug Safety Information from Adverse Drug Event Narratives in the Korea Adverse Event Reporting System Using Natural Language Processing Techniques.
    Kim S; Kang T; Chung TK; Choi Y; Hong Y; Jung K; Lee H
    Drug Saf; 2023 Aug; 46(8):781-795. PubMed ID: 37330415
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A contextual multi-task neural approach to medication and adverse events identification from clinical text.
    Narayanan S; Mannam K; Achan P; Ramesh MV; Rangan PV; Rajan SP
    J Biomed Inform; 2022 Jan; 125():103960. PubMed ID: 34875387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extracting comprehensive clinical information for breast cancer using deep learning methods.
    Zhang X; Zhang Y; Zhang Q; Ren Y; Qiu T; Ma J; Sun Q
    Int J Med Inform; 2019 Dec; 132():103985. PubMed ID: 31627032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving large language models for clinical named entity recognition via prompt engineering.
    Hu Y; Chen Q; Du J; Peng X; Keloth VK; Zuo X; Zhou Y; Li Z; Jiang X; Lu Z; Roberts K; Xu H
    J Am Med Inform Assoc; 2024 Sep; 31(9):1812-1820. PubMed ID: 38281112
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparative study of large language model-based zero-shot inference and task-specific supervised classification of breast cancer pathology reports.
    Sushil M; Zack T; Mandair D; Zheng Z; Wali A; Yu YN; Quan Y; Lituiev D; Butte AJ
    J Am Med Inform Assoc; 2024 Oct; 31(10):2315-2327. PubMed ID: 38900207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep learning approaches for extracting adverse events and indications of dietary supplements from clinical text.
    Fan Y; Zhou S; Li Y; Zhang R
    J Am Med Inform Assoc; 2021 Mar; 28(3):569-577. PubMed ID: 33150942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RxBERT: Enhancing drug labeling text mining and analysis with AI language modeling.
    Wu L; Gray M; Dang O; Xu J; Fang H; Tong W
    Exp Biol Med (Maywood); 2023 Nov; 248(21):1937-1943. PubMed ID: 38166420
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oversampling effect in pretraining for bidirectional encoder representations from transformers (BERT) to localize medical BERT and enhance biomedical BERT.
    Wada S; Takeda T; Okada K; Manabe S; Konishi S; Kamohara J; Matsumura Y
    Artif Intell Med; 2024 Jul; 153():102889. PubMed ID: 38728811
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of asthma control factor in clinical notes using a hybrid deep learning model.
    Agnikula Kshatriya BS; Sagheb E; Wi CI; Yoon J; Seol HY; Juhn Y; Sohn S
    BMC Med Inform Decis Mak; 2021 Nov; 21(Suppl 7):272. PubMed ID: 34753481
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Portable automatic text classification for adverse drug reaction detection via multi-corpus training.
    Sarker A; Gonzalez G
    J Biomed Inform; 2015 Feb; 53():196-207. PubMed ID: 25451103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detecting adverse drug reactions in discharge summaries of electronic medical records using Readpeer.
    Tang Y; Yang J; Ang PS; Dorajoo SR; Foo B; Soh S; Tan SH; Tham MY; Ye Q; Shek L; Sung C; Tung A
    Int J Med Inform; 2019 Aug; 128():62-70. PubMed ID: 31160013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.