These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 38459923)
1. Changing the polyphenol composition and enhancing the enzyme activity of sorghum grain by solid-state fermentation with different microbial strains. Zhang D; Wang Q; Li Z; Shen Z; Tan B; Zhai X J Sci Food Agric; 2024 Aug; 104(10):6186-6195. PubMed ID: 38459923 [TBL] [Abstract][Full Text] [Related]
2. Comparative study of solid-state fermentation with different microbial strains on the bioactive compounds and microstructure of brown rice. Zhang D; Ye Y; Tan B Food Chem; 2022 Dec; 397():133735. PubMed ID: 35914455 [TBL] [Abstract][Full Text] [Related]
3. Nutrient retention and fate of iron-binding phenolic compounds during the injera processing of tannin-free and high-tannin sorghum. Seyoum Y; Retta N; Baye K J Sci Food Agric; 2016 Mar; 96(5):1541-7. PubMed ID: 25951136 [TBL] [Abstract][Full Text] [Related]
4. Solid-State Fermentation of Sorghum by Espitia-Hernández P; Ruelas-Chacón X; Chávez-González ML; Ascacio-Valdés JA; Flores-Naveda A; Sepúlveda-Torre L Foods; 2022 Oct; 11(19):. PubMed ID: 36230197 [TBL] [Abstract][Full Text] [Related]
6. Fate of phytochemicals during malting and fermentation of type III tannin sorghum and impact on product biofunctionality. Kayodé AP; Mertz C; Guyot JP; Brat P; Mouquet-Rivier C J Agric Food Chem; 2013 Feb; 61(8):1935-42. PubMed ID: 23373471 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of enzyme activity and fiber content of soybean cotyledon fiber and distiller's dried grains with solubles by solid state fermentation. Yang S; Lio J; Wang T Appl Biochem Biotechnol; 2012 May; 167(1):109-21. PubMed ID: 22528656 [TBL] [Abstract][Full Text] [Related]
8. Biomass sorghum as a novel substrate in solid-state fermentation for the production of hemicellulases and cellulases by Aspergillus niger and A. fumigatus. Dias LM; Dos Santos BV; Albuquerque CJB; Baeta BEL; Pasquini D; Baffi MA J Appl Microbiol; 2018 Mar; 124(3):708-718. PubMed ID: 29253315 [TBL] [Abstract][Full Text] [Related]
9. Comparative characterization of proteins secreted by Neurospora sitophila in solid-state and submerged fermentation. Li Y; Peng X; Chen H J Biosci Bioeng; 2013 Oct; 116(4):493-8. PubMed ID: 23676362 [TBL] [Abstract][Full Text] [Related]
10. Enhanced cellulase recovery without β-glucosidase supplementation for cellulosic ethanol production using an engineered strain and surfactant. Huang R; Guo H; Su R; Qi W; He Z Biotechnol Bioeng; 2017 Mar; 114(3):543-551. PubMed ID: 27696443 [TBL] [Abstract][Full Text] [Related]
11. Combined treatment of rice bran by solid-state fermentation and extrusion: Effect of processing sequence and microbial strains. Wu S; Zhang Y; Chen B; Wang X; Qiao Y; Chen J Food Chem X; 2024 Oct; 23():101549. PubMed ID: 39036482 [TBL] [Abstract][Full Text] [Related]
12. Effects of koji fermented phenolic compounds on the oxidative stability of fish miso. Giri A; Osako K; Okamoto A; Okazaki E; Ohshima T J Food Sci; 2012 Feb; 77(2):C228-35. PubMed ID: 22251370 [TBL] [Abstract][Full Text] [Related]
13. Fermented pearl millet (Pennisetum glaucum) with in vitro DNA damage protection activity, bioactive compounds and antioxidant potential. Salar RK; Purewal SS; Sandhu KS Food Res Int; 2017 Oct; 100(Pt 2):204-210. PubMed ID: 28888442 [TBL] [Abstract][Full Text] [Related]
14. Effects of solid-state fermentation with two filamentous fungi on the total phenolic contents, flavonoids, antioxidant activities and lipid fractions of plum fruit (Prunus domestica L.) by-products. Dulf FV; Vodnar DC; Socaciu C Food Chem; 2016 Oct; 209():27-36. PubMed ID: 27173530 [TBL] [Abstract][Full Text] [Related]
15. Solid-state fermentation of soybean and corn processing coproducts for potential feed improvement. Lio J; Wang T J Agric Food Chem; 2012 Aug; 60(31):7702-9. PubMed ID: 22799754 [TBL] [Abstract][Full Text] [Related]
16. Tracking the changes and bioaccessibility of phenolic compounds of sorghum grains (Sorghum bicolor (L.) Moench) upon germination and seedling growth by UHPLC-QTOF-MS/MS. D'Almeida CTDS; Abdelbost L; Mameri H; Ferreira MSL Food Res Int; 2024 Oct; 193():114854. PubMed ID: 39160045 [TBL] [Abstract][Full Text] [Related]
17. Cellulase production through solid-state tray fermentation, and its use for bioethanol from sorghum stover. Idris ASO; Pandey A; Rao SS; Sukumaran RK Bioresour Technol; 2017 Oct; 242():265-271. PubMed ID: 28366693 [TBL] [Abstract][Full Text] [Related]
18. Upgrading the antioxidant potential of cereals by their fungal fermentation under solid-state cultivation conditions. Bhanja Dey T; Kuhad RC Lett Appl Microbiol; 2014 Nov; 59(5):493-9. PubMed ID: 24964826 [TBL] [Abstract][Full Text] [Related]
19. Proteolysis in tempeh-type products obtained with Rhizopus and Aspergillus strains from grass pea (Lathyrus sativus) seeds. Starzyńska-Janiszewska A; Stodolak B; Wikiera A Acta Sci Pol Technol Aliment; 2015; 14(2):125-132. PubMed ID: 28068010 [TBL] [Abstract][Full Text] [Related]
20. Enzymatic degradation of phytate, polyphenols and dietary fibers in Ethiopian injera flours: effect on iron bioaccessibility. Baye K; Guyot JP; Icard-Vernière C; Rochette I; Mouquet-Rivier C Food Chem; 2015 May; 174():60-7. PubMed ID: 25529652 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]