BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 38460144)

  • 1. Quantitative Assessment of Energetic Contributions of Residues in a SARS-CoV-2 Viral Enzyme/Nanobody Interface.
    Kumar A; Vashisth H
    J Chem Inf Model; 2024 Mar; 64(6):2068-2076. PubMed ID: 38460144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Allosteric Determinants of the SARS-CoV-2 Spike Protein Binding with Nanobodies: Examining Mechanisms of Mutational Escape and Sensitivity of the Omicron Variant.
    Verkhivker G
    Int J Mol Sci; 2022 Feb; 23(4):. PubMed ID: 35216287
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural and energetic features of the dimerization of the main proteinase of SARS-CoV-2 using molecular dynamic simulations.
    Zhang Y; Zheng L; Yang Y; Qu Y; Li YQ; Zhao M; Mu Y; Li W
    Phys Chem Chem Phys; 2022 Feb; 24(7):4324-4333. PubMed ID: 35107451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. E484K mutation in SARS-CoV-2 RBD enhances binding affinity with hACE2 but reduces interactions with neutralizing antibodies and nanobodies: Binding free energy calculation studies.
    Wang WB; Liang Y; Jin YQ; Zhang J; Su JG; Li QM
    J Mol Graph Model; 2021 Dec; 109():108035. PubMed ID: 34562851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Covalent and non-covalent binding free energy calculations for peptidomimetic inhibitors of SARS-CoV-2 main protease.
    Awoonor-Williams E; Abu-Saleh AAA
    Phys Chem Chem Phys; 2021 Mar; 23(11):6746-6757. PubMed ID: 33711090
    [TBL] [Abstract][Full Text] [Related]  

  • 6.
    Zhu X; An K; Yan J; Xu P; Bai C
    Front Biosci (Landmark Ed); 2023 Apr; 28(4):67. PubMed ID: 37114534
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An extended conformation of SARS-CoV-2 main protease reveals allosteric targets.
    Sun Z; Wang L; Li X; Fan C; Xu J; Shi Z; Qiao H; Lan Z; Zhang X; Li L; Zhou X; Geng Y
    Proc Natl Acad Sci U S A; 2022 Apr; 119(15):e2120913119. PubMed ID: 35324337
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Naïve Phage Display Library-Derived Nanobody Neutralizes SARS-CoV-2 and Three Variants of Concern.
    Wu D; Cong J; Wei J; Hu J; Sun W; Ran W; Liao C; Zheng H; Ye L
    Int J Nanomedicine; 2023; 18():5781-5795. PubMed ID: 37869063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of Early Pandemic Stage Mutations on Molecular Dynamics of SARS-CoV-2 M
    Sheik Amamuddy O; Verkhivker GM; Tastan Bishop Ö
    J Chem Inf Model; 2020 Oct; 60(10):5080-5102. PubMed ID: 32853525
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure-guided design of a trivalent nanobody cluster targeting SARS-CoV-2 spike protein.
    Jiang X; Qin Q; Zhu H; Qian J; Huang Q
    Int J Biol Macromol; 2024 Jan; 256(Pt 1):128191. PubMed ID: 38000614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deciphering the binding mechanism of inhibitors of the SARS-CoV-2 main protease through multiple replica accelerated molecular dynamics simulations and free energy landscapes.
    Li M; Liu X; Zhang S; Liang S; Zhang Q; Chen J
    Phys Chem Chem Phys; 2022 Sep; 24(36):22129-22143. PubMed ID: 36082845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of high-affinity inhibitors of SARS-CoV-2 main protease: Towards the development of effective COVID-19 therapy.
    Mohammad T; Shamsi A; Anwar S; Umair M; Hussain A; Rehman MT; AlAjmi MF; Islam A; Hassan MI
    Virus Res; 2020 Oct; 288():198102. PubMed ID: 32717346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Static all-atom energetic mappings of the SARS-Cov-2 spike protein and dynamic stability analysis of "Up" versus "Down" protomer states.
    Peters MH; Bastidas O; Kokron DS; Henze CE
    PLoS One; 2020; 15(11):e0241168. PubMed ID: 33170884
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanistic Insights into SARS-CoV-2 Main Protease Inhibition Reveals Hotspot Residues.
    Marimuthu P; Gorle S; Karnati KR
    J Chem Inf Model; 2021 Dec; 61(12):6053-6065. PubMed ID: 34842417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular dynamics and in silico mutagenesis on the reversible inhibitor-bound SARS-CoV-2 main protease complexes reveal the role of lateral pocket in enhancing the ligand affinity.
    Weng YL; Naik SR; Dingelstad N; Lugo MR; Kalyaanamoorthy S; Ganesan A
    Sci Rep; 2021 Apr; 11(1):7429. PubMed ID: 33795718
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular insights to the binding interactions of APNS containing HIV-protease inhibitors against SARS-CoV-2 M
    Purohit P; Dash JJ; Muya JT; Meher BR
    J Biomol Struct Dyn; 2023 Jun; 41(9):3900-3913. PubMed ID: 35388744
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of the Dimerization and Activity of SARS-CoV-2 Main Protease through Reversible Glutathionylation of Cysteine 300.
    Davis DA; Bulut H; Shrestha P; Yaparla A; Jaeger HK; Hattori SI; Wingfield PT; Mieyal JJ; Mitsuya H; Yarchoan R
    mBio; 2021 Aug; 12(4):e0209421. PubMed ID: 34399606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrostatic Interactions Are the Primary Determinant of the Binding Affinity of SARS-CoV-2 Spike RBD to ACE2: A Computational Case Study of Omicron Variants.
    Sang P; Chen YQ; Liu MT; Wang YT; Yue T; Li Y; Yin YR; Yang LQ
    Int J Mol Sci; 2022 Nov; 23(23):. PubMed ID: 36499120
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potential of NO donor furoxan as SARS-CoV-2 main protease (M
    Al-Sehemi AG; Pannipara M; Parulekar RS; Patil O; Choudhari PB; Bhatia MS; Zubaidha PK; Tamboli Y
    J Biomol Struct Dyn; 2021 Sep; 39(15):5804-5818. PubMed ID: 32643550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antibody-nanobody combination increases their neutralizing activity against SARS-CoV-2 and nanobody H11-H4 is effective against Alpha, Kappa and Delta variants.
    Nguyen H; Li MS
    Sci Rep; 2022 Jun; 12(1):9701. PubMed ID: 35690632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.