BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 38460192)

  • 1. Molecular mechanisms reconstruction from single-cell multi-omics data with HuMMuS.
    Trimbour R; Deutschmann IM; Cantini L
    Bioinformatics; 2024 May; 40(5):. PubMed ID: 38460192
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-cell multi-omics analysis identifies context-specific gene regulatory gates and mechanisms.
    Malekpour SA; Haghverdi L; Sadeghi M
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38653489
    [TBL] [Abstract][Full Text] [Related]  

  • 3. REUNION: transcription factor binding prediction and regulatory association inference from single-cell multi-omics data.
    Yang Y; Pe'er D
    Bioinformatics; 2024 Jun; 40(Supplement_1):i567-i575. PubMed ID: 38940155
    [TBL] [Abstract][Full Text] [Related]  

  • 4. scAWMV: an adaptively weighted multi-view learning framework for the integrative analysis of parallel scRNA-seq and scATAC-seq data.
    Zeng P; Ma Y; Lin Z
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36383176
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scbean: a python library for single-cell multi-omics data analysis.
    Zhang H; Wang Y; Lian B; Wang Y; Li X; Wang T; Shang X; Yang H; Aziz A; Hu J
    Bioinformatics; 2024 Feb; 40(2):. PubMed ID: 38290765
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Con-AAE: contrastive cycle adversarial autoencoders for single-cell multi-omics alignment and integration.
    Wang X; Hu Z; Yu T; Wang Y; Wang R; Wei Y; Shu J; Ma J; Li Y
    Bioinformatics; 2023 Apr; 39(4):. PubMed ID: 36975610
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-cell multi-omics integration for unpaired data by a siamese network with graph-based contrastive loss.
    Liu C; Wang L; Liu Z
    BMC Bioinformatics; 2023 Jan; 24(1):5. PubMed ID: 36600199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Paired single-cell multi-omics data integration with Mowgli.
    Huizing GJ; Deutschmann IM; Peyré G; Cantini L
    Nat Commun; 2023 Nov; 14(1):7711. PubMed ID: 38001063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. coupleCoC+: An information-theoretic co-clustering-based transfer learning framework for the integrative analysis of single-cell genomic data.
    Zeng P; Lin Z
    PLoS Comput Biol; 2021 Jun; 17(6):e1009064. PubMed ID: 34077420
    [TBL] [Abstract][Full Text] [Related]  

  • 10. scNCL: transferring labels from scRNA-seq to scATAC-seq data with neighborhood contrastive regularization.
    Yan X; Zheng R; Chen J; Li M
    Bioinformatics; 2023 Aug; 39(8):. PubMed ID: 37584660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Are dropout imputation methods for scRNA-seq effective for scATAC-seq data?
    Liu Y; Zhang J; Wang S; Zeng X; Zhang W
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34718405
    [TBL] [Abstract][Full Text] [Related]  

  • 12. scBGEDA: deep single-cell clustering analysis via a dual denoising autoencoder with bipartite graph ensemble clustering.
    Wang Y; Yu Z; Li S; Bian C; Liang Y; Wong KC; Li X
    Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36734596
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-cell regulome data analysis by SCRAT.
    Ji Z; Zhou W; Ji H
    Bioinformatics; 2017 Sep; 33(18):2930-2932. PubMed ID: 28505247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Building gene regulatory networks from scATAC-seq and scRNA-seq using Linked Self Organizing Maps.
    Jansen C; Ramirez RN; El-Ali NC; Gomez-Cabrero D; Tegner J; Merkenschlager M; Conesa A; Mortazavi A
    PLoS Comput Biol; 2019 Nov; 15(11):e1006555. PubMed ID: 31682608
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Network-based integrative analysis of single-cell transcriptomic and epigenomic data for cell types.
    Wu W; Zhang W; Ma X
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35043143
    [TBL] [Abstract][Full Text] [Related]  

  • 16. COPS: detecting co-occurrence and spatial arrangement of transcription factor binding motifs in genome-wide datasets.
    Ha N; Polychronidou M; Lohmann I
    PLoS One; 2012; 7(12):e52055. PubMed ID: 23272209
    [TBL] [Abstract][Full Text] [Related]  

  • 17. scBridge embraces cell heterogeneity in single-cell RNA-seq and ATAC-seq data integration.
    Li Y; Zhang D; Yang M; Peng D; Yu J; Liu Y; Lv J; Chen L; Peng X
    Nat Commun; 2023 Sep; 14(1):6045. PubMed ID: 37770437
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gene Regulatory Network Modeling Using Single-Cell Multi-Omics in Plants.
    Chau T; Timilsena P; Li S
    Methods Mol Biol; 2023; 2698():259-275. PubMed ID: 37682480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Double-jeopardy: scRNA-seq doublet/multiplet detection using multi-omic profiling.
    Sun B; Bugarin-Estrada E; Overend LE; Walker CE; Tucci FA; Bashford-Rogers RJM
    Cell Rep Methods; 2021 May; 1(1):None. PubMed ID: 34278374
    [TBL] [Abstract][Full Text] [Related]  

  • 20. BABEL enables cross-modality translation between multiomic profiles at single-cell resolution.
    Wu KE; Yost KE; Chang HY; Zou J
    Proc Natl Acad Sci U S A; 2021 Apr; 118(15):. PubMed ID: 33827925
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.