These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
223 related articles for article (PubMed ID: 38460514)
21. Parallel genetic adaptation across environments differing in mode of growth or resource availability. Turner CB; Marshall CW; Cooper VS Evol Lett; 2018 Aug; 2(4):355-367. PubMed ID: 30283687 [TBL] [Abstract][Full Text] [Related]
22. Genomewide Stabilization of mRNA during a "Feast-to-Famine" Growth Transition in Escherichia coli. Morin M; Enjalbert B; Ropers D; Girbal L; Cocaign-Bousquet M mSphere; 2020 May; 5(3):. PubMed ID: 32434841 [TBL] [Abstract][Full Text] [Related]
23. Rapid Genetic Adaptation during the First Four Months of Survival under Resource Exhaustion. Avrani S; Bolotin E; Katz S; Hershberg R Mol Biol Evol; 2017 Jul; 34(7):1758-1769. PubMed ID: 28369614 [TBL] [Abstract][Full Text] [Related]
24. Fitness Trade-Offs Determine the Role of the Molecular Chaperonin GroEL in Buffering Mutations. Sabater-Muñoz B; Prats-Escriche M; Montagud-Martínez R; López-Cerdán A; Toft C; Aguilar-Rodríguez J; Wagner A; Fares MA Mol Biol Evol; 2015 Oct; 32(10):2681-93. PubMed ID: 26116858 [TBL] [Abstract][Full Text] [Related]
28. Nitrogen Starvation Induces Persister Cell Formation in Escherichia coli. Brown DR J Bacteriol; 2019 Feb; 201(3):. PubMed ID: 30420451 [TBL] [Abstract][Full Text] [Related]
29. Fitness variation across subtle environmental perturbations reveals local modularity and global pleiotropy of adaptation. Kinsler G; Geiler-Samerotte K; Petrov DA Elife; 2020 Dec; 9():. PubMed ID: 33263280 [TBL] [Abstract][Full Text] [Related]
30. Predicting the accumulation of storage compounds by Rhodococcus jostii RHA1 in the feast-famine growth cycles using genome-scale flux balance analysis. Tajparast M; Frigon D PLoS One; 2018; 13(3):e0191835. PubMed ID: 29494607 [TBL] [Abstract][Full Text] [Related]
32. Fluctuating selection facilitates the discovery of broadly effective but difficult to reach adaptive outcomes in yeast. Fasanello VJ; Liu P; Fay JC; Botero CA Evol Lett; 2024 Apr; 8(2):243-252. PubMed ID: 38525031 [TBL] [Abstract][Full Text] [Related]
33. Adaptations Accumulated under Prolonged Resource Exhaustion Are Highly Transient. Avrani S; Katz S; Hershberg R mSphere; 2020 Aug; 5(4):. PubMed ID: 32817448 [TBL] [Abstract][Full Text] [Related]
34. Aggregation performance and adhesion behavior of microbes in response to feast/famine condition: Rapid granulation of aerobic granular sludge. Li Z; Meng Q; Wan C; Zhang C; Tan X; Liu X Environ Res; 2022 May; 208():112780. PubMed ID: 35065930 [TBL] [Abstract][Full Text] [Related]
35. Evolutionary adaptation to environmental pH in experimental lineages of Escherichia coli. Hughes BS; Cullum AJ; Bennett AF Evolution; 2007 Jul; 61(7):1725-34. PubMed ID: 17598751 [TBL] [Abstract][Full Text] [Related]
36. Evolution in microbes. Kussell E Annu Rev Biophys; 2013; 42():493-514. PubMed ID: 23654305 [TBL] [Abstract][Full Text] [Related]
37. Global Rebalancing of Cellular Resources by Pleiotropic Point Mutations Illustrates a Multi-scale Mechanism of Adaptive Evolution. Utrilla J; O'Brien EJ; Chen K; McCloskey D; Cheung J; Wang H; Armenta-Medina D; Feist AM; Palsson BO Cell Syst; 2016 Apr; 2(4):260-71. PubMed ID: 27135538 [TBL] [Abstract][Full Text] [Related]
38. Different adaptive strategies in E. coli populations evolving under macronutrient limitation and metal ion limitation. Warsi OM; Andersson DI; Dykhuizen DE BMC Evol Biol; 2018 May; 18(1):72. PubMed ID: 29776341 [TBL] [Abstract][Full Text] [Related]
40. Evolutionary dynamics and structural consequences of de novo beneficial mutations and mutant lineages arising in a constant environment. Kinnersley M; Schwartz K; Yang DD; Sherlock G; Rosenzweig F BMC Biol; 2021 Feb; 19(1):20. PubMed ID: 33541358 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]