These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 38460652)

  • 1. Cm-siRPred: Predicting chemically modified siRNA efficiency based on multi-view learning strategy.
    Liu T; Huang J; Luo D; Ren L; Ning L; Huang J; Lin H; Zhang Y
    Int J Biol Macromol; 2024 Apr; 264(Pt 2):130638. PubMed ID: 38460652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SMEpred workbench: A web server for predicting efficacy of chemicallymodified siRNAs.
    Dar SA; Gupta AK; Thakur A; Kumar M
    RNA Biol; 2016 Nov; 13(11):1144-1151. PubMed ID: 27603513
    [TBL] [Abstract][Full Text] [Related]  

  • 3. VIRsiRNApred: a web server for predicting inhibition efficacy of siRNAs targeting human viruses.
    Qureshi A; Thakur N; Kumar M
    J Transl Med; 2013 Dec; 11():305. PubMed ID: 24330765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From sequences to therapeutics: Using machine learning to predict chemically modified siRNA activity.
    Martinelli DD
    Genomics; 2024 Mar; 116(2):110815. PubMed ID: 38431033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MysiRNA: improving siRNA efficacy prediction using a machine-learning model combining multi-tools and whole stacking energy (ΔG).
    Mysara M; Elhefnawi M; Garibaldi JM
    J Biomed Inform; 2012 Jun; 45(3):528-34. PubMed ID: 22388012
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Informatics approach to the rational design of siRNA libraries.
    Ebalunode JO; Jagun C; Zheng W
    Methods Mol Biol; 2011; 672():341-58. PubMed ID: 20838976
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Asymmetric trichotomous partitioning overcomes dataset limitations in building machine learning models for predicting siRNA efficacy.
    Monopoli KR; Korkin D; Khvorova A
    Mol Ther Nucleic Acids; 2023 Sep; 33():93-109. PubMed ID: 37456778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. m5U-SVM: identification of RNA 5-methyluridine modification sites based on multi-view features of physicochemical features and distributed representation.
    Ao C; Ye X; Sakurai T; Zou Q; Yu L
    BMC Biol; 2023 Apr; 21(1):93. PubMed ID: 37095510
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Re-Engineering RNA Molecules into Therapeutic Agents.
    Egli M; Manoharan M
    Acc Chem Res; 2019 Apr; 52(4):1036-1047. PubMed ID: 30912917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional features defining the efficacy of cholesterol-conjugated, self-deliverable, chemically modified siRNAs.
    Shmushkovich T; Monopoli KR; Homsy D; Leyfer D; Betancur-Boissel M; Khvorova A; Wolfson AD
    Nucleic Acids Res; 2018 Nov; 46(20):10905-10916. PubMed ID: 30169779
    [TBL] [Abstract][Full Text] [Related]  

  • 11. siRNAmod: A database of experimentally validated chemically modified siRNAs.
    Dar SA; Thakur A; Qureshi A; Kumar M
    Sci Rep; 2016 Jan; 6():20031. PubMed ID: 26818131
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SiRNA silencing efficacy prediction based on a deep architecture.
    Han Y; He F; Chen Y; Liu Y; Yu H
    BMC Genomics; 2018 Sep; 19(Suppl 7):669. PubMed ID: 30255786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure-based design of novel chemical modification of the 3'-overhang for optimization of short interfering RNA performance.
    Xu L; Wang X; He H; Zhou J; Li X; Ma H; Li Z; Zeng Y; Shao R; Cen S; Wang Y
    Biochemistry; 2015 Feb; 54(5):1268-77. PubMed ID: 25635512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RFRCDB-siRNA: improved design of siRNAs by random forest regression model coupled with database searching.
    Jiang P; Wu H; Da Y; Sang F; Wei J; Sun X; Lu Z
    Comput Methods Programs Biomed; 2007 Sep; 87(3):230-8. PubMed ID: 17644215
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancer-FRL: Improved and Robust Identification of Enhancers and Their Activities Using Feature Representation Learning.
    Wang C; Zou Q; Ju Y; Shi H
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(2):967-975. PubMed ID: 36063523
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Learning embedding features based on multisense-scaled attention architecture to improve the predictive performance of anticancer peptides.
    He W; Wang Y; Cui L; Su R; Wei L
    Bioinformatics; 2021 Dec; 37(24):4684-4693. PubMed ID: 34323948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical modification of siRNA.
    Chernolovskaya EL; Zenkova MA
    Curr Opin Mol Ther; 2010 Apr; 12(2):158-67. PubMed ID: 20373259
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast Self-Guided Multi-View Subspace Clustering.
    Chen Z; Wu XJ; Xu T; Kittler J
    IEEE Trans Image Process; 2023; 32():6514-6525. PubMed ID: 37030827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Learning global dependencies and multi-semantics within heterogeneous graph for predicting disease-related lncRNAs.
    Xuan P; Wang S; Cui H; Zhao Y; Zhang T; Wu P
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 36088549
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An siRNA designing tool with a unique functional off-target filtering approach.
    Das S; Ghosal S; Kozak K; Chakrabarti J
    J Biomol Struct Dyn; 2013; 31(11):1343-57. PubMed ID: 23140209
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.