These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 38460684)
1. Sequential hydrotalcite precipitation, microbial sulfate reduction and in situ hydrogen sulfide removal for neutral mine drainage treatment. Cheng KY; Acuña CR; Kaksonen AH; Esslemont G; Douglas GB Sci Total Environ; 2024 May; 926():171537. PubMed ID: 38460684 [TBL] [Abstract][Full Text] [Related]
2. Treatment of neutral gold mine drainage by sequential in situ hydrotalcite precipitation, and microbial sulfate and cyanide removal. Cheng KY; Acuña CR; Kaksonen AH; Esslemont G; Douglas GB Sci Total Environ; 2021 Dec; 801():149613. PubMed ID: 34438154 [TBL] [Abstract][Full Text] [Related]
3. Sequential hydrotalcite precipitation and biological sulfate reduction for acid mine drainage treatment. Yan S; Cheng KY; Morris C; Douglas G; Ginige MP; Zheng G; Zhou L; Kaksonen AH Chemosphere; 2020 Aug; 252():126570. PubMed ID: 32443266 [TBL] [Abstract][Full Text] [Related]
4. Column experiments to assess the effects of electron donors on the efficiency of in situ precipitation of Zn, Cd, Co and Ni in contaminated groundwater applying the biological sulfate removal technology. Geets J; Vanbroekhoven K; Borremans B; Vangronsveld J; Diels L; van der Lelie D Environ Sci Pollut Res Int; 2006 Oct; 13(6):362-78. PubMed ID: 17120826 [TBL] [Abstract][Full Text] [Related]
5. Bioremediation of acid mine drainage using sulfate-reducing wetland bioreactor: Filling substrates influence, sulfide oxidation and microbial community. Wang H; Zhang M; Dong P; Xue J; Liu L Chemosphere; 2024 Feb; 349():140789. PubMed ID: 38013025 [TBL] [Abstract][Full Text] [Related]
6. Glycerol amendment enhances biosulfidogenesis in acid mine drainage-affected areas: An incubation column experiment. Ilin AM; van der Graaf CM; Yusta I; Sorrentino A; Sánchez-Andrea I; Sánchez-España J Front Bioeng Biotechnol; 2022; 10():978728. PubMed ID: 36105607 [TBL] [Abstract][Full Text] [Related]
7. Algae as an electron donor promoting sulfate reduction for the bioremediation of acid rock drainage. Ayala-Parra P; Sierra-Alvarez R; Field JA J Hazard Mater; 2016 Nov; 317():335-343. PubMed ID: 27318730 [TBL] [Abstract][Full Text] [Related]
8. Microbial and nutrient investigations into the use of in situ layers for treatment of tailings effluent. Hulshof AH; Blowes DW; Ptacek CJ; Gould WD Environ Sci Technol; 2003 Nov; 37(21):5027-33. PubMed ID: 14620834 [TBL] [Abstract][Full Text] [Related]
9. Microbial communities in full-scale woodchip bioreactors treating aquaculture effluents. Aalto SL; Suurnäkki S; von Ahnen M; Tiirola M; Pedersen PB J Environ Manage; 2022 Jan; 301():113852. PubMed ID: 34592671 [TBL] [Abstract][Full Text] [Related]
10. Sequential in situ hydrotalcite precipitation and biological denitrification for the treatment of high-nitrate industrial effluent. Cheng KY; Kaksonen AH; Douglas GB Bioresour Technol; 2014 Nov; 172():373-381. PubMed ID: 25280045 [TBL] [Abstract][Full Text] [Related]
11. Semi-passive in-situ pilot scale bioreactor successfully removed sulfate and metals from mine impacted water under subarctic climatic conditions. Nielsen G; Hatam I; Abuan KA; Janin A; Coudert L; Blais JF; Mercier G; Baldwin SA Water Res; 2018 Sep; 140():268-279. PubMed ID: 29723816 [TBL] [Abstract][Full Text] [Related]
12. Optimization of the operation of packed bed bioreactor to improve the sulfate and metal removal from acid mine drainage. Dev S; Roy S; Bhattacharya J J Environ Manage; 2017 Sep; 200():135-144. PubMed ID: 28577451 [TBL] [Abstract][Full Text] [Related]
13. The effect of acidic pH and presence of metals as parameters in establishing a sulfidogenic process in anaerobic reactor. Vieira BF; Couto PT; Sancinetti GP; Klein B; van Zyl D; Rodriguez RP J Environ Sci Health A Tox Hazard Subst Environ Eng; 2016 Aug; 51(10):793-7. PubMed ID: 27222283 [TBL] [Abstract][Full Text] [Related]
14. [Removal of Sulfate Ions from Aqueous Solution by Adsorption with Hydrotalcite- like Composite]. Gu YB; Ma YW; Wan JQ; Wang Y; Guan ZY Huan Jing Ke Xue; 2016 Mar; 37(3):1000-7. PubMed ID: 27337893 [TBL] [Abstract][Full Text] [Related]
15. Reactive transport modeling of column experiments for the remediation of acid mine drainage. Amos RT; Mayer KU; Blowes DW; Ptacek CJ Environ Sci Technol; 2004 Jun; 38(11):3131-8. PubMed ID: 15224746 [TBL] [Abstract][Full Text] [Related]
16. Arsenic removal in a sulfidogenic fixed-bed column bioreactor. Altun M; Sahinkaya E; Durukan I; Bektas S; Komnitsas K J Hazard Mater; 2014 Mar; 269():31-7. PubMed ID: 24360509 [TBL] [Abstract][Full Text] [Related]
17. Sulfate and metal removal from acid mine drainage using sugarcane vinasse as electron donor: Performance and microbial community of the down-flow structured-bed bioreactor. Nogueira EW; Gouvêa de Godoi LA; Marques Yabuki LN; Brucha G; Zamariolli Damianovic MHR Bioresour Technol; 2021 Jun; 330():124968. PubMed ID: 33744733 [TBL] [Abstract][Full Text] [Related]
18. Comparison of two acidophilic sulfidogenic consortia for the treatment of acidic mine water. Frederico TD; Nancucheo I; Santos WCB; Oliveira RRM; Buzzi DC; Pires ES; Silva PMP; Lucheta AR; Alves JO; de Oliveira GC; Bitencourt JAP Front Bioeng Biotechnol; 2022; 10():1048412. PubMed ID: 36524050 [TBL] [Abstract][Full Text] [Related]
19. Comparison of the efficiency of chitinous and ligneous substrates in metal and sulfate removal from mining-influenced water. Pinto PX; Al-Abed SR; McKernan J J Environ Manage; 2018 Dec; 227():321-328. PubMed ID: 30199728 [TBL] [Abstract][Full Text] [Related]
20. Preparation of metal-resistant immobilized sulfate reducing bacteria beads for acid mine drainage treatment. Zhang M; Wang H; Han X Chemosphere; 2016 Jul; 154():215-223. PubMed ID: 27058913 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]