BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 38461149)

  • 1. AlphaPept: a modern and open framework for MS-based proteomics.
    Strauss MT; Bludau I; Zeng WF; Voytik E; Ammar C; Schessner JP; Ilango R; Gill M; Meier F; Willems S; Mann M
    Nat Commun; 2024 Mar; 15(1):2168. PubMed ID: 38461149
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AlphaTims: Indexing Trapped Ion Mobility Spectrometry-TOF Data for Fast and Easy Accession and Visualization.
    Willems S; Voytik E; Skowronek P; Strauss MT; Mann M
    Mol Cell Proteomics; 2021; 20():100149. PubMed ID: 34543758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AlphaPeptStats: an open-source Python package for automated and scalable statistical analysis of mass spectrometry-based proteomics.
    Krismer E; Bludau I; Strauss MT; Mann M
    Bioinformatics; 2023 Aug; 39(8):. PubMed ID: 37527012
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accurate Label-Free Quantification by directLFQ to Compare Unlimited Numbers of Proteomes.
    Ammar C; Schessner JP; Willems S; Michaelis AC; Mann M
    Mol Cell Proteomics; 2023 Jul; 22(7):100581. PubMed ID: 37225017
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NeuroPycon: An open-source python toolbox for fast multi-modal and reproducible brain connectivity pipelines.
    Meunier D; Pascarella A; Altukhov D; Jas M; Combrisson E; Lajnef T; Bertrand-Dubois D; Hadid V; Alamian G; Alves J; Barlaam F; Saive AL; Dehgan A; Jerbi K
    Neuroimage; 2020 Oct; 219():117020. PubMed ID: 32522662
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decon2LS: An open-source software package for automated processing and visualization of high resolution mass spectrometry data.
    Jaitly N; Mayampurath A; Littlefield K; Adkins JN; Anderson GA; Smith RD
    BMC Bioinformatics; 2009 Mar; 10():87. PubMed ID: 19292916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PaDuA: A Python Library for High-Throughput (Phospho)proteomics Data Analysis.
    Ressa A; Fitzpatrick M; van den Toorn H; Heck AJR; Altelaar M
    J Proteome Res; 2019 Feb; 18(2):576-584. PubMed ID: 30525654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. multiplierz: an extensible API based desktop environment for proteomics data analysis.
    Parikh JR; Askenazi M; Ficarro SB; Cashorali T; Webber JT; Blank NC; Zhang Y; Marto JA
    BMC Bioinformatics; 2009 Oct; 10():364. PubMed ID: 19874609
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Corra: Computational framework and tools for LC-MS discovery and targeted mass spectrometry-based proteomics.
    Brusniak MY; Bodenmiller B; Campbell D; Cooke K; Eddes J; Garbutt A; Lau H; Letarte S; Mueller LN; Sharma V; Vitek O; Zhang N; Aebersold R; Watts JD
    BMC Bioinformatics; 2008 Dec; 9():542. PubMed ID: 19087345
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient visualization of high-throughput targeted proteomics experiments: TAPIR.
    Röst HL; Rosenberger G; Aebersold R; Malmström L
    Bioinformatics; 2015 Jul; 31(14):2415-7. PubMed ID: 25788625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ProteoSign: an end-user online differential proteomics statistical analysis platform.
    Efstathiou G; Antonakis AN; Pavlopoulos GA; Theodosiou T; Divanach P; Trudgian DC; Thomas B; Papanikolaou N; Aivaliotis M; Acuto O; Iliopoulos I
    Nucleic Acids Res; 2017 Jul; 45(W1):W300-W306. PubMed ID: 28520987
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational Proteomics with Jupyter and Python.
    Malmström L
    Methods Mol Biol; 2019; 1977():237-248. PubMed ID: 30980332
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From raw data to biological discoveries: a computational analysis pipeline for mass spectrometry-based proteomics.
    Lavallée-Adam M; Park SK; Martínez-Bartolomé S; He L; Yates JR
    J Am Soc Mass Spectrom; 2015 Nov; 26(11):1820-6. PubMed ID: 26002791
    [TBL] [Abstract][Full Text] [Related]  

  • 14. pyOpenMS: a Python-based interface to the OpenMS mass-spectrometry algorithm library.
    Röst HL; Schmitt U; Aebersold R; Malmström L
    Proteomics; 2014 Jan; 14(1):74-7. PubMed ID: 24420968
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental design and data-analysis in label-free quantitative LC/MS proteomics: A tutorial with MSqRob.
    Goeminne LJE; Gevaert K; Clement L
    J Proteomics; 2018 Jan; 171():23-36. PubMed ID: 28391044
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CoreFlow: a computational platform for integration, analysis and modeling of complex biological data.
    Pasculescu A; Schoof EM; Creixell P; Zheng Y; Olhovsky M; Tian R; So J; Vanderlaan RD; Pawson T; Linding R; Colwill K
    J Proteomics; 2014 Apr; 100():167-73. PubMed ID: 24503186
    [TBL] [Abstract][Full Text] [Related]  

  • 17. APP: an Automated Proteomics Pipeline for the analysis of mass spectrometry data based on multiple open access tools.
    Malm EK; Srivastava V; Sundqvist G; Bulone V
    BMC Bioinformatics; 2014 Dec; 15(1):441. PubMed ID: 25547515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly accelerated feature detection in proteomics data sets using modern graphics processing units.
    Hussong R; Gregorius B; Tholey A; Hildebrandt A
    Bioinformatics; 2009 Aug; 25(15):1937-43. PubMed ID: 19447788
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pyteomics--a Python framework for exploratory data analysis and rapid software prototyping in proteomics.
    Goloborodko AA; Levitsky LI; Ivanov MV; Gorshkov MV
    J Am Soc Mass Spectrom; 2013 Feb; 24(2):301-4. PubMed ID: 23292976
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A practical guide to interpreting and generating bottom-up proteomics data visualizations.
    Schessner JP; Voytik E; Bludau I
    Proteomics; 2022 Apr; 22(8):e2100103. PubMed ID: 35107884
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.