BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 38461284)

  • 1. DeepAEG: a model for predicting cancer drug response based on data enhancement and edge-collaborative update strategies.
    Lao C; Zheng P; Chen H; Liu Q; An F; Li Z
    BMC Bioinformatics; 2024 Mar; 25(1):105. PubMed ID: 38461284
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DeepCDR: a hybrid graph convolutional network for predicting cancer drug response.
    Liu Q; Hu Z; Jiang R; Zhou M
    Bioinformatics; 2020 Dec; 36(Suppl_2):i911-i918. PubMed ID: 33381841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DeepTTA: a transformer-based model for predicting cancer drug response.
    Jiang L; Jiang C; Yu X; Fu R; Jin S; Liu X
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35348595
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting anticancer hyperfoods with graph convolutional networks.
    Gonzalez G; Gong S; Laponogov I; Bronstein M; Veselkov K
    Hum Genomics; 2021 Jun; 15(1):33. PubMed ID: 34099048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting cancer drug response using parallel heterogeneous graph convolutional networks with neighborhood interactions.
    Peng W; Liu H; Dai W; Yu N; Wang J
    Bioinformatics; 2022 Sep; 38(19):4546-4553. PubMed ID: 35997568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DualGCN: a dual graph convolutional network model to predict cancer drug response.
    Ma T; Liu Q; Li H; Zhou M; Jiang R; Zhang X
    BMC Bioinformatics; 2022 Apr; 23(Suppl 4):129. PubMed ID: 35428192
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving prediction of phenotypic drug response on cancer cell lines using deep convolutional network.
    Liu P; Li H; Li S; Leung KS
    BMC Bioinformatics; 2019 Jul; 20(1):408. PubMed ID: 31357929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GADRP: graph convolutional networks and autoencoders for cancer drug response prediction.
    Wang H; Dai C; Wen Y; Wang X; Liu W; He S; Bo X; Peng S
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36460622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ITNR: Inversion Transformer-based Neural Ranking for cancer drug recommendations.
    Sotudian S; Paschalidis IC
    Comput Biol Med; 2024 Apr; 172():108312. PubMed ID: 38503090
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A link prediction approach to cancer drug sensitivity prediction.
    Turki T; Wei Z
    BMC Syst Biol; 2017 Oct; 11(Suppl 5):94. PubMed ID: 28984192
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SWnet: a deep learning model for drug response prediction from cancer genomic signatures and compound chemical structures.
    Zuo Z; Wang P; Chen X; Tian L; Ge H; Qian D
    BMC Bioinformatics; 2021 Sep; 22(1):434. PubMed ID: 34507532
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GraphCDR: a graph neural network method with contrastive learning for cancer drug response prediction.
    Liu X; Song C; Huang F; Fu H; Xiao W; Zhang W
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34727569
    [TBL] [Abstract][Full Text] [Related]  

  • 13. XGraphCDS: An explainable deep learning model for predicting drug sensitivity from gene pathways and chemical structures.
    Wang Y; Yu X; Gu Y; Li W; Zhu K; Chen L; Tang Y; Liu G
    Comput Biol Med; 2024 Jan; 168():107746. PubMed ID: 38039896
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MMCL-CDR: enhancing cancer drug response prediction with multi-omics and morphology images contrastive representation learning.
    Li Y; Guo Z; Gao X; Wang G
    Bioinformatics; 2023 Dec; 39(12):. PubMed ID: 38070154
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene-centric multi-omics integration with convolutional encoders for cancer drug response prediction.
    Lee M; Kim PJ; Joe H; Kim HG
    Comput Biol Med; 2022 Dec; 151(Pt A):106192. PubMed ID: 36327883
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fusing graph transformer with multi-aggregate GCN for enhanced drug-disease associations prediction.
    He S; Yun L; Yi H
    BMC Bioinformatics; 2024 Feb; 25(1):79. PubMed ID: 38378479
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting Drug Response Based on Multi-Omics Fusion and Graph Convolution.
    Peng W; Chen T; Dai W
    IEEE J Biomed Health Inform; 2022 Mar; 26(3):1384-1393. PubMed ID: 34347616
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DROEG: a method for cancer drug response prediction based on omics and essential genes integration.
    Wu P; Sun R; Fahira A; Chen Y; Jiangzhou H; Wang K; Yang Q; Dai Y; Pan D; Shi Y; Wang Z
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36715269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The prediction of drug sensitivity by multi-omics fusion reveals the heterogeneity of drug response in pan-cancer.
    Wang C; Zhang M; Zhao J; Li B; Xiao X; Zhang Y
    Comput Biol Med; 2023 Sep; 163():107220. PubMed ID: 37406589
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Drug-target affinity prediction with extended graph learning-convolutional networks.
    Qi H; Yu T; Yu W; Liu C
    BMC Bioinformatics; 2024 Feb; 25(1):75. PubMed ID: 38365583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.