These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 38461331)

  • 1. Machine learning developed a CD8
    Chen R; Zheng Y; Fei C; Ye J; Fei H
    Sci Rep; 2024 Mar; 14(1):5794. PubMed ID: 38461331
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine Learning Developed a Programmed Cell Death Signature for Predicting Prognosis, Ecosystem, and Drug Sensitivity in Ovarian Cancer.
    Wang L; Chen X; Song L; Zou H
    Anal Cell Pathol (Amst); 2023; 2023():7365503. PubMed ID: 37868825
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine learning developed a fibroblast-related signature for predicting clinical outcome and drug sensitivity in ovarian cancer.
    Fu W; Feng Q; Tao R
    Medicine (Baltimore); 2024 Apr; 103(16):e37783. PubMed ID: 38640321
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine learning developed a PI3K/Akt pathway-related signature for predicting prognosis and drug sensitivity in ovarian cancer.
    Han X; Yang L; Tian H; Ji Y
    Aging (Albany NY); 2023 Oct; 15(20):11162-11183. PubMed ID: 37851341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A macrophage related signature for predicting prognosis and drug sensitivity in ovarian cancer based on integrative machine learning.
    Zhao B; Pei L
    BMC Med Genomics; 2023 Oct; 16(1):230. PubMed ID: 37784081
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of M2-like macrophage-related signature for predicting the prognosis, ecosystem and immunotherapy response in hepatocellular carcinoma.
    Feng Q; Lu H; Wu L
    PLoS One; 2023; 18(9):e0291645. PubMed ID: 37725627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine learning developed an intratumor heterogeneity signature for predicting prognosis and immunotherapy benefits in skin cutaneous melanoma.
    Zhang W; Wang S
    Melanoma Res; 2024 Jun; 34(3):215-224. PubMed ID: 38364052
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine learning constructs a T cell-related signature for predicting prognosis and drug sensitivity in ovarian cancer.
    Zhang Y; Pei L
    Aging (Albany NY); 2024 Feb; 16(4):3332-3349. PubMed ID: 38345575
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioinformatics identification of a T-cell-related signature for predicting prognosis and drug sensitivity in hepatocellular carcinoma.
    Wang D; Ding D; Ying J; Qin Y
    IET Syst Biol; 2023 Dec; 17(6):366-377. PubMed ID: 37935646
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Leveraging programmed cell death signature to predict clinical outcome and immunotherapy benefits in postoperative bladder cancer.
    Wang Y; Zhang Q
    Sci Rep; 2024 Oct; 14(1):22976. PubMed ID: 39363008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Association between tumor mutation burden and immune infiltration in ovarian cancer.
    Fan S; Gao X; Qin Q; Li H; Yuan Z; Zhao S
    Int Immunopharmacol; 2020 Dec; 89(Pt A):107126. PubMed ID: 33189611
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel tumor mutational burden-based risk model predicts prognosis and correlates with immune infiltration in ovarian cancer.
    Wang H; Liu J; Yang J; Wang Z; Zhang Z; Peng J; Wang Y; Hong L
    Front Immunol; 2022; 13():943389. PubMed ID: 36003381
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integration of Bioinformatics and Machine Learning to Identify CD8+ T Cell-Related Prognostic Signature to Predict Clinical Outcomes and Treatment Response in Breast Cancer Patients.
    Wu B; Li L; Li L; Chen Y; Guan Y; Zhao J
    Genes (Basel); 2024 Aug; 15(8):. PubMed ID: 39202452
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine learning developed an intratumor heterogeneity signature for predicting clinical outcome and immunotherapy benefit in bladder cancer.
    Chen C; Zhang J; Liu X; Zhuang Q; Lu H; Hou J
    Transl Androl Urol; 2024 Jul; 13(7):1104-1117. PubMed ID: 39100839
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine learning developed a programmed cell death signature for predicting prognosis and immunotherapy benefits in lung adenocarcinoma.
    Ding D; Wang L; Zhang Y; Shi K; Shen Y
    Transl Oncol; 2023 Dec; 38():101784. PubMed ID: 37722290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine learning-based cell death signature for predicting the prognosis and immunotherapy benefit in stomach adenocarcinoma.
    Li F; Feng Q; Tao R
    Medicine (Baltimore); 2024 Mar; 103(10):e37314. PubMed ID: 38457593
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A degradome-related signature for predicting the prognosis and immunotherapy benefit in stomach adenocarcinoma based on machine learning procedure.
    Deng Z; Feng Q; Zhao D; Huang Z
    Medicine (Baltimore); 2024 Apr; 103(15):e37728. PubMed ID: 38608069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of copper metabolism-related subtypes and establishment of the prognostic model in ovarian cancer.
    Zhao S; Zhang X; Gao F; Chi H; Zhang J; Xia Z; Cheng C; Liu J
    Front Endocrinol (Lausanne); 2023; 14():1145797. PubMed ID: 36950684
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An exosome-derived lncRNA signature identified by machine learning associated with prognosis and biomarkers for immunotherapy in ovarian cancer.
    Cui Y; Zhang W; Lu W; Feng Y; Wu X; Zhuo Z; Zhang D; Zhang Y
    Front Immunol; 2024; 15():1228235. PubMed ID: 38404588
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of cancer-associated fibroblasts signature for predicting the prognosis and immunotherapy response in hepatocellular carcinoma.
    Ye J; Tian W; Zheng B; Zeng T
    Medicine (Baltimore); 2023 Nov; 102(45):e35938. PubMed ID: 37960718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.