These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 38461347)

  • 1. Integrating core physics and machine learning for improved parameter prediction in boiling water reactor operations.
    Oktavian MR; Nistor J; Gruenwald JT; Xu Y
    Sci Rep; 2024 Mar; 14(1):5835. PubMed ID: 38461347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hybrid Modelling by Machine Learning Corrections of Analytical Model Predictions towards High-Fidelity Simulation Solutions.
    Bock FE; Keller S; Huber N; Klusemann B
    Materials (Basel); 2021 Apr; 14(8):. PubMed ID: 33920078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of different fuels and clads on neutronic calculations in a boiling water reactor using the Monte Carlo method.
    Düz M; İnal S
    Sci Rep; 2020 Dec; 10(1):22114. PubMed ID: 33335209
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-fidelity information fusion with concatenated neural networks.
    Pawar S; San O; Vedula P; Rasheed A; Kvamsdal T
    Sci Rep; 2022 Apr; 12(1):5900. PubMed ID: 35393511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving the Accuracy of Physics-Based Hydration-Free Energy Predictions by Machine Learning the Remaining Error Relative to the Experiment.
    Bass L; Elder LH; Folescu DE; Forouzesh N; Tolokh IS; Karpatne A; Onufriev AV
    J Chem Theory Comput; 2024 Jan; 20(1):396-410. PubMed ID: 38149593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing physiologic simulations using supervised learning on coarse mesh solutions.
    Kolandaivelu K; O'Brien CC; Shazly T; Edelman ER; Kolachalama VB
    J R Soc Interface; 2015 Mar; 12(104):20141073. PubMed ID: 25652458
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring the potential of transfer learning for metamodels of heterogeneous material deformation.
    Lejeune E; Zhao B
    J Mech Behav Biomed Mater; 2021 May; 117():104276. PubMed ID: 33639456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of surrogate models for flood inundation: The physics-guided LSG model vs. state-of-the-art machine learning models.
    Fraehr N; Wang QJ; Wu W; Nathan R
    Water Res; 2024 Mar; 252():121202. PubMed ID: 38290237
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physics-driven learning of x-ray skin dose distribution in interventional procedures.
    Roser P; Zhong X; Birkhold A; Strobel N; Kowarschik M; Fahrig R; Maier A
    Med Phys; 2019 Oct; 46(10):4654-4665. PubMed ID: 31407346
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Constructing Physics-Informed Neural Networks with Architecture Based on Analytical Modification of Numerical Methods by Solving the Problem of Modelling Processes in a Chemical Reactor.
    Tarkhov D; Lazovskaya T; Malykhina G
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Local bi-fidelity field approximation with Knowledge Based Neural Networks for Computational Fluid Dynamics.
    Pepper N; Gaymann A; Sharma S; Montomoli F
    Sci Rep; 2021 Jul; 11(1):14459. PubMed ID: 34262057
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Standard technical specifications for methacholine chloride (Methacholine) bronchial challenge test (2023)].
    ; ;
    Zhonghua Jie He He Hu Xi Za Zhi; 2024 Feb; 47(2):101-119. PubMed ID: 38309959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physics-informed neural network with transfer learning (TL-PINN) based on domain similarity measure for prediction of nuclear reactor transients.
    Prantikos K; Chatzidakis S; Tsoukalas LH; Heifetz A
    Sci Rep; 2023 Oct; 13(1):16840. PubMed ID: 37803015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Operator learning for urban water clarification hydrodynamics and particulate matter transport with physics-informed neural networks.
    Li H; Shatarah M
    Water Res; 2024 Mar; 251():121123. PubMed ID: 38241806
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A machine learning framework for rapid forecasting and history matching in unconventional reservoirs.
    Srinivasan S; O'Malley D; Mudunuru MK; Sweeney MR; Hyman JD; Karra S; Frash L; Carey JW; Gross MR; Guthrie GD; Carr T; Li L; Viswanathan HS
    Sci Rep; 2021 Nov; 11(1):21730. PubMed ID: 34741046
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-resolution coupled physics solvers for analysing fine-scale nuclear reactor design problems.
    Mahadevan VS; Merzari E; Tautges T; Jain R; Obabko A; Smith M; Fischer P
    Philos Trans A Math Phys Eng Sci; 2014 Aug; 372(2021):. PubMed ID: 24982250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neutron transport calculation for the BEAVRS core based on the LSTM neural network.
    Ren C; He L; Lei J; Liu J; Huang G; Gao K; Qu H; Zhang Y; Li W; Yang X; Yu T
    Sci Rep; 2023 Sep; 13(1):14670. PubMed ID: 37673930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting neutron diffusion eigenvalues with a query-based adaptive neural architecture.
    Lysenko MG; Wong HI; Maldonado GI
    IEEE Trans Neural Netw; 1999; 10(4):790-800. PubMed ID: 18252578
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast and accurate dose predictions for novel radiotherapy treatments in heterogeneous phantoms using conditional 3D-UNet generative adversarial networks.
    Mentzel F; Kröninger K; Lerch M; Nackenhorst O; Paino J; Rosenfeld A; Saraswati A; Tsoi AC; Weingarten J; Hagenbuchner M; Guatelli S
    Med Phys; 2022 May; 49(5):3389-3404. PubMed ID: 35184310
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.