BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 38461471)

  • 61. BAC-FISH in wheat identifies chromosome landmarks consisting of different types of transposable elements.
    Zhang P; Li W; Fellers J; Friebe B; Gill BS
    Chromosoma; 2004 Mar; 112(6):288-99. PubMed ID: 14986017
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Islands of retroelements are major components of Drosophila centromeres.
    Chang CH; Chavan A; Palladino J; Wei X; Martins NMC; Santinello B; Chen CC; Erceg J; Beliveau BJ; Wu CT; Larracuente AM; Mellone BG
    PLoS Biol; 2019 May; 17(5):e3000241. PubMed ID: 31086362
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Great Abundance of Satellite DNA in Proceratophrys (Anura, Odontophrynidae) Revealed by Genome Sequencing.
    da Silva MJ; Fogarin Destro R; Gazoni T; Narimatsu H; Pereira Dos Santos PS; Haddad CFB; Parise-Maltempi PP
    Cytogenet Genome Res; 2020; 160(3):141-147. PubMed ID: 32146462
    [TBL] [Abstract][Full Text] [Related]  

  • 64. The genetic and epigenetic landscape of the
    Naish M; Alonge M; Wlodzimierz P; Tock AJ; Abramson BW; Schmücker A; Mandáková T; Jamge B; Lambing C; Kuo P; Yelina N; Hartwick N; Colt K; Smith LM; Ton J; Kakutani T; Martienssen RA; Schneeberger K; Lysak MA; Berger F; Bousios A; Michael TP; Schatz MC; Henderson IR
    Science; 2021 Nov; 374(6569):eabi7489. PubMed ID: 34762468
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Organization and evolution of Gorilla centromeric DNA from old strategies to new approaches.
    Catacchio CR; Ragone R; Chiatante G; Ventura M
    Sci Rep; 2015 Sep; 5():14189. PubMed ID: 26387916
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The holocentricity in the dioecious nutmeg (Myristica fragrans) is not based on major satellite repeats.
    Kuo YT; Kurian JG; Schubert V; Fuchs J; Melzer M; Muraleedharan A; Maruthachalam R; Houben A
    Chromosome Res; 2024 May; 32(2):8. PubMed ID: 38717688
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Isolation and characterization of centromeric repetitive DNA sequences in Saccharum spontaneum.
    Zhang W; Zuo S; Li Z; Meng Z; Han J; Song J; Pan YB; Wang K
    Sci Rep; 2017 Jan; 7():41659. PubMed ID: 28134354
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Chromosomal distribution and evolution of abundant retrotransposons in plants: gypsy elements in diploid and polyploid Brachiaria forage grasses.
    Santos FC; Guyot R; do Valle CB; Chiari L; Techio VH; Heslop-Harrison P; Vanzela AL
    Chromosome Res; 2015 Sep; 23(3):571-82. PubMed ID: 26386563
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Stable barley chromosomes without centromeric repeats.
    Nasuda S; Hudakova S; Schubert I; Houben A; Endo TR
    Proc Natl Acad Sci U S A; 2005 Jul; 102(28):9842-7. PubMed ID: 15998740
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Divergence in centromere structure distinguishes related genomes in Coix lacryma-jobi and its wild relative.
    Han Y; Wang G; Liu Z; Liu J; Yue W; Song R; Zhang X; Jin W
    Chromosoma; 2010 Feb; 119(1):89-98. PubMed ID: 19756690
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Sequences associated with A chromosome centromeres are present throughout the maize B chromosome.
    Lamb JC; Kato A; Birchler JA
    Chromosoma; 2005 Feb; 113(7):337-49. PubMed ID: 15586285
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Molecular Cytogenetic Characterization of C-Band-Positive Heterochromatin of the Greater Long-Tailed Hamster (Tscherskia triton, Cricetinae).
    Kamimura E; Uno Y; Yamada K; Nishida C; Matsuda Y
    Cytogenet Genome Res; 2022; 162(6):323-333. PubMed ID: 36535261
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Conservation and purifying selection of transcribed genes located in a rice centromere.
    Fan C; Walling JG; Zhang J; Hirsch CD; Jiang J; Wing RA
    Plant Cell; 2011 Aug; 23(8):2821-30. PubMed ID: 21856794
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Retrotransposon accumulation and satellite amplification mediated by segmental duplication facilitate centromere expansion in rice.
    Ma J; Jackson SA
    Genome Res; 2006 Feb; 16(2):251-9. PubMed ID: 16354755
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Plant centromeres: genetics, epigenetics and evolution.
    Oliveira LC; Torres GA
    Mol Biol Rep; 2018 Oct; 45(5):1491-1497. PubMed ID: 30117088
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Interstitial telomeric repeats are enriched in the centromeres of chromosomes in Solanum species.
    He L; Liu J; Torres GA; Zhang H; Jiang J; Xie C
    Chromosome Res; 2013 Mar; 21(1):5-13. PubMed ID: 23250588
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Considerations regarding centromere assembly in plant whole-genome sequencing.
    Han M; Yang Y; Zhang M; Wang K
    Methods; 2021 Mar; 187():54-56. PubMed ID: 32920129
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Centromeres of Cucumis melo L. comprise Cmcent and two novel repeats, CmSat162 and CmSat189.
    Setiawan AB; Teo CH; Kikuchi S; Sassa H; Kato K; Koba T
    PLoS One; 2020; 15(1):e0227578. PubMed ID: 31945109
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The structure, function, and evolution of plant centromeres.
    Naish M; Henderson IR
    Genome Res; 2024 Mar; 34(2):161-178. PubMed ID: 38485193
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Molecular analysis of holocentric centromeres of Luzula species.
    Haizel T; Lim YK; Leitch AR; Moore G
    Cytogenet Genome Res; 2005; 109(1-3):134-43. PubMed ID: 15753569
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.