BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38462287)

  • 1. Modelling-based joint embedding of histology and genomics using canonical correlation analysis for breast cancer survival prediction.
    Subramanian V; Syeda-Mahmood T; Do MN
    Artif Intell Med; 2024 Mar; 149():102787. PubMed ID: 38462287
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantifying common and distinct information in single-cell multimodal data with Tilted Canonical Correlation Analysis.
    Lin KZ; Zhang NR
    Proc Natl Acad Sci U S A; 2023 Aug; 120(32):e2303647120. PubMed ID: 37523521
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep learning based feature-level integration of multi-omics data for breast cancer patients survival analysis.
    Tong L; Mitchel J; Chatlin K; Wang MD
    BMC Med Inform Decis Mak; 2020 Sep; 20(1):225. PubMed ID: 32933515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrating multi-omics data by learning modality invariant representations for improved prediction of overall survival of cancer.
    Tong L; Wu H; Wang MD
    Methods; 2021 May; 189():74-85. PubMed ID: 32763377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting censored survival data based on the interactions between meta-dimensional omics data in breast cancer.
    Kim D; Li R; Dudek SM; Ritchie MD
    J Biomed Inform; 2015 Aug; 56():220-8. PubMed ID: 26048077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tightly integrated multiomics-based deep tensor survival model for time-to-event prediction.
    Zhang JZ; Xu W; Hu P
    Bioinformatics; 2022 Jun; 38(12):3259-3266. PubMed ID: 35445698
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrating genomic data and pathological images to effectively predict breast cancer clinical outcome.
    Sun D; Li A; Tang B; Wang M
    Comput Methods Programs Biomed; 2018 Jul; 161():45-53. PubMed ID: 29852967
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MAMF-GCN: Multi-scale adaptive multi-channel fusion deep graph convolutional network for predicting mental disorder.
    Pan J; Lin H; Dong Y; Wang Y; Ji Y
    Comput Biol Med; 2022 Sep; 148():105823. PubMed ID: 35872410
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Topological integration of RPPA proteomic data with multi-omics data for survival prediction in breast cancer via pathway activity inference.
    Kim TR; Jeong HH; Sohn KA
    BMC Med Genomics; 2019 Jul; 12(Suppl 5):94. PubMed ID: 31296204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. D-CCA: A Decomposition-based Canonical Correlation Analysis for High-Dimensional Datasets.
    Shu H; Wang X; Zhu H
    J Am Stat Assoc; 2020; 115(529):292-306. PubMed ID: 33311817
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A plea for taking all available clinical information into account when assessing the predictive value of omics data.
    Volkmann A; De Bin R; Sauerbrei W; Boulesteix AL
    BMC Med Res Methodol; 2019 Jul; 19(1):162. PubMed ID: 31340753
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep learning assisted multi-omics integration for survival and drug-response prediction in breast cancer.
    Malik V; Kalakoti Y; Sundar D
    BMC Genomics; 2021 Mar; 22(1):214. PubMed ID: 33761889
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrative, multi-omics, analysis of blood samples improves model predictions: applications to cancer.
    Ponzi E; Thoresen M; Haugdahl Nøst T; Møllersen K
    BMC Bioinformatics; 2021 Aug; 22(1):395. PubMed ID: 34353282
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integration and Analysis of CPTAC Proteomics Data in the Context of Cancer Genomics in the cBioPortal.
    Wu P; Heins ZJ; Muller JT; Katsnelson L; de Bruijn I; Abeshouse AA; Schultz N; Fenyö D; Gao J
    Mol Cell Proteomics; 2019 Sep; 18(9):1893-1898. PubMed ID: 31308250
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Discovery of Novel Biomarkers Improves Breast Cancer Intrinsic Subtype Prediction and Reconciles the Labels in the METABRIC Data Set.
    Milioli HH; Vimieiro R; Riveros C; Tishchenko I; Berretta R; Moscato P
    PLoS One; 2015; 10(7):e0129711. PubMed ID: 26132585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting breast cancer drug response using a multiple-layer cell line drug response network model.
    Huang S; Hu P; Lakowski TM
    BMC Cancer; 2021 May; 21(1):648. PubMed ID: 34059012
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sparse canonical correlation analysis from a predictive point of view.
    Wilms I; Croux C
    Biom J; 2015 Sep; 57(5):834-51. PubMed ID: 26147637
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robust sparse canonical correlation analysis.
    Wilms I; Croux C
    BMC Syst Biol; 2016 Aug; 10(1):72. PubMed ID: 27516087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GPDBN: deep bilinear network integrating both genomic data and pathological images for breast cancer prognosis prediction.
    Wang Z; Li R; Wang M; Li A
    Bioinformatics; 2021 Sep; 37(18):2963-2970. PubMed ID: 33734318
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.