These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 38462452)
1. Low-Frequency Oscillations of Bacteriochlorophyll Oligomers in Chlorosomes of Photosynthetic Green Bacteria. Yakovlev AG; Taisova AS; Fetisova ZG Biochemistry (Mosc); 2023 Dec; 88(12):2084-2093. PubMed ID: 38462452 [TBL] [Abstract][Full Text] [Related]
2. Q-band hyperchromism and B-band hypochromism of bacteriochlorophyll c as a tool for investigation of the oligomeric structure of chlorosomes of the green photosynthetic bacterium Chloroflexus aurantiacus. Yakovlev AG; Taisova AS; Fetisova ZG Photosynth Res; 2020 Dec; 146(1-3):95-108. PubMed ID: 31939070 [TBL] [Abstract][Full Text] [Related]
3. Femtosecond Exciton Relaxation in Chlorosomes of the Photosynthetic Green Bacterium Chloroflexus aurantiacus. Yakovlev AG; Taisova AS; Fetisova ZG Biochemistry (Mosc); 2023 May; 88(5):704-715. PubMed ID: 37331716 [TBL] [Abstract][Full Text] [Related]
4. Estimation of the bacteriochlorophyll c oligomerisation extent in Chloroflexus aurantiacus chlorosomes by very low-frequency vibrations of the pigment molecules: A new approach. Yakovlev AG; Taisova AS; Shuvalov VA; Fetisova ZG Biophys Chem; 2018 Sep; 240():1-8. PubMed ID: 29857169 [TBL] [Abstract][Full Text] [Related]
5. Utilization of blue-green light by chlorosomes from the photosynthetic bacterium Chloroflexus aurantiacus: Ultrafast excitation energy conversion and transfer. Yakovlev AG; Taisova AS; Fetisova ZG Biochim Biophys Acta Bioenerg; 2021 Jun; 1862(6):148396. PubMed ID: 33581107 [TBL] [Abstract][Full Text] [Related]
7. Variability of aggregation extent of light-harvesting pigments in peripheral antenna of Chloroflexus aurantiacus. Yakovlev A; Taisova A; Arutyunyan A; Shuvalov V; Fetisova Z Photosynth Res; 2017 Sep; 133(1-3):343-356. PubMed ID: 28361448 [TBL] [Abstract][Full Text] [Related]
8. Structural differences in chlorosomes from Chloroflexus aurantiacus grown under different conditions support the BChl c-binding function of the 5.7 kDa polypeptide. Lehmann RP; Brunisholz RA; Zuber H FEBS Lett; 1994 Apr; 342(3):319-24. PubMed ID: 8150092 [TBL] [Abstract][Full Text] [Related]
9. Impact of esterified bacteriochlorophylls on the biogenesis of chlorosomes in Chloroflexus aurantiacus. Wang Y; Freund DM; Magdaong NM; Urban VS; Frank HA; Hegeman AD; Tang JK Photosynth Res; 2014 Oct; 122(1):69-86. PubMed ID: 24880610 [TBL] [Abstract][Full Text] [Related]
10. Dynamic Stark effect in β and γ carotenes induced by photoexcitation of bacteriochlorophyll c in chlorosomes from Chloroflexus aurantiacus. Yakovlev AG; Taisova AS; Fetisova ZG Photosynth Res; 2022 Dec; 154(3):291-302. PubMed ID: 36115930 [TBL] [Abstract][Full Text] [Related]
11. Bacteriochlorophyll organization and energy transfer kinetics in chlorosomes from Chloroflexus aurantiacus depend on the light regime during growth. Ma YZ; Cox RP; Gillbro T; Miller M Photosynth Res; 1996 Feb; 47(2):157-65. PubMed ID: 24301823 [TBL] [Abstract][Full Text] [Related]
12. Antenna organization in green photosynthetic bacteria. 1. Oligomeric bacteriochlorophyll c as a model for the 740 nm absorbing bacteriochlorophyll c in Chloroflexus aurantiacus chlorosomes. Brune DC; Nozawa T; Blankenship RE Biochemistry; 1987 Dec; 26(26):8644-52. PubMed ID: 3442679 [TBL] [Abstract][Full Text] [Related]
13. Direct counting of submicrometer-sized photosynthetic apparatus dispersed in medium at cryogenic temperature by confocal laser fluorescence microscopy: estimation of the number of bacteriochlorophyll c in single light-harvesting antenna complexes chlorosomes of green photosynthetic bacteria. Saga Y; Shibata Y; Itoh S; Tamiaki H J Phys Chem B; 2007 Nov; 111(43):12605-9. PubMed ID: 17918876 [TBL] [Abstract][Full Text] [Related]
14. Ultrafast excited-state dynamics in chlorosomes isolated from the photosynthetic filamentous green bacterium Chloroflexus aurantiacus. Yakovlev AG; Taisova AS; Shuvalov VA; Fetisova ZG Physiol Plant; 2019 May; 166(1):12-21. PubMed ID: 30499123 [TBL] [Abstract][Full Text] [Related]
15. Excitation delocalization in the bacteriochlorophyll c antenna of the green bacterium Chloroflexus aurantiacus as revealed by ultrafast pump-probe spectroscopy. Savikhin S; Buck DR; Struve WS; Blankenship RE; Taisova AS; Novoderezhkin VI; Fetisova ZG FEBS Lett; 1998 Jul; 430(3):323-6. PubMed ID: 9688564 [TBL] [Abstract][Full Text] [Related]
16. Redox effects on the excited-state lifetime in chlorosomes and bacteriochlorophyll c oligomers. van Noort PI; Zhu Y; LoBrutto R; Blankenship RE Biophys J; 1997 Jan; 72(1):316-25. PubMed ID: 8994616 [TBL] [Abstract][Full Text] [Related]
17. Qy-excitation resonance Raman spectra of chlorophyll a and bacteriochlorophyll c/d aggregates. Effects of peripheral substituents on the low-frequency vibrational characteristics. Diers JR; Zhu Y; Blankenship RE; Bocian DF J Phys Chem; 1996 May; 100(20):8573-9. PubMed ID: 11539301 [TBL] [Abstract][Full Text] [Related]
18. Resonance Raman studies on the structure of bacteriochlorophyll c in chlorosomes from Chloroflexus aurantiacus. Nozawa T; Noguchi T; Tasumi M J Biochem; 1990 Nov; 108(5):737-40. PubMed ID: 2081732 [TBL] [Abstract][Full Text] [Related]
19. Association of bacteriochlorophyll a with the CsmA protein in chlorosomes of the photosynthetic green filamentous bacterium Chloroflexus aurantiacus. Sakuragi Y; Frigaard N; Shimada K; Matsuura K Biochim Biophys Acta; 1999 Nov; 1413(3):172-80. PubMed ID: 10556629 [TBL] [Abstract][Full Text] [Related]
20. Transmission electron microscopic study on supramolecular nanostructures of bacteriochlorophyll self-aggregates in chlorosomes of green photosynthetic bacteria. Saga Y; Tamiaki H J Biosci Bioeng; 2006 Aug; 102(2):118-23. PubMed ID: 17027873 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]