BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 38462839)

  • 1. The open channel state in anion channelrhodopsin GtACR1 is a red-absorbing intermediate.
    Szundi I; Kliger DS
    Biophys J; 2024 Apr; 123(8):940-946. PubMed ID: 38462839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Parallel photocycle kinetic model of anion channelrhodopsin GtACR1 function.
    Szundi I; Kliger DS
    Biophys J; 2024 Jun; 123(12):1735-1750. PubMed ID: 38762755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isospectral intermediates in the photochemical reaction cycle of anion channelrhodopsin GtACR1.
    Schleissner P; Szundi I; Chen E; Li H; Spudich JL; Kliger DS
    Biophys J; 2023 Oct; 122(20):4091-4103. PubMed ID: 37749886
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural Changes in an Anion Channelrhodopsin: Formation of the K and L Intermediates at 80 K.
    Yi A; Li H; Mamaeva N; Fernandez De Cordoba RE; Lugtenburg J; DeGrip WJ; Spudich JL; Rothschild KJ
    Biochemistry; 2017 Apr; 56(16):2197-2208. PubMed ID: 28350445
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure of the natural anion-conducting channelrhodopsin GtACR1.
    Kim YS; Kato HE; Yamashita K; Ito S; Inoue K; Ramakrishnan C; Fenno LE; Evans KE; Paggi JM; Dror RO; Kandori H; Kobilka BK; Deisseroth K
    Nature; 2018 Sep; 561(7723):343-348. PubMed ID: 30158696
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure of a natural light-gated anion channelrhodopsin.
    Li H; Huang CY; Govorunova EG; Schafer CT; Sineshchekov OA; Wang M; Zheng L; Spudich JL
    Elife; 2019 Jan; 8():. PubMed ID: 30614787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Implications for the impairment of the rapid channel closing of Proteomonas sulcata anion channelrhodopsin 1 at high Cl
    Tsukamoto T; Kikuchi C; Suzuki H; Aizawa T; Kikukawa T; Demura M
    Sci Rep; 2018 Sep; 8(1):13445. PubMed ID: 30194401
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The preferential transport of NO
    Ohki Y; Shinone T; Inoko S; Sudo M; Demura M; Kikukawa T; Tsukamoto T
    J Biol Chem; 2023 Nov; 299(11):105305. PubMed ID: 37778732
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The crystal structure of bromide-bound
    Li H; Huang CY; Govorunova EG; Sineshchekov OA; Yi A; Rothschild KJ; Wang M; Zheng L; Spudich JL
    Elife; 2021 May; 10():. PubMed ID: 33998458
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optogenetic control of the guard cell membrane potential and stomatal movement by the light-gated anion channel
    Huang S; Ding M; Roelfsema MRG; Dreyer I; Scherzer S; Al-Rasheid KAS; Gao S; Nagel G; Hedrich R; Konrad KR
    Sci Adv; 2021 Jul; 7(28):. PubMed ID: 34244145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural mechanisms of selectivity and gating in anion channelrhodopsins.
    Kato HE; Kim YS; Paggi JM; Evans KE; Allen WE; Richardson C; Inoue K; Ito S; Ramakrishnan C; Fenno LE; Yamashita K; Hilger D; Lee SY; Berndt A; Shen K; Kandori H; Dror RO; Kobilka BK; Deisseroth K
    Nature; 2018 Sep; 561(7723):349-354. PubMed ID: 30158697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photochemical reaction cycle transitions during anion channelrhodopsin gating.
    Sineshchekov OA; Li H; Govorunova EG; Spudich JL
    Proc Natl Acad Sci U S A; 2016 Apr; 113(14):E1993-2000. PubMed ID: 27001860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time-resolved spectroscopic and electrophysiological data reveal insights in the gating mechanism of anion channelrhodopsin.
    Dreier MA; Althoff P; Norahan MJ; Tennigkeit SA; El-Mashtoly SF; Lübben M; Kötting C; Rudack T; Gerwert K
    Commun Biol; 2021 May; 4(1):578. PubMed ID: 33990694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extending the Time Domain of Neuronal Silencing with Cryptophyte Anion Channelrhodopsins.
    Govorunova EG; Sineshchekov OA; Hemmati R; Janz R; Morelle O; Melkonian M; Wong GK; Spudich JL
    eNeuro; 2018; 5(3):. PubMed ID: 30027111
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proton transfer pathway in anion channelrhodopsin-1.
    Tsujimura M; Kojima K; Kawanishi S; Sudo Y; Ishikita H
    Elife; 2021 Dec; 10():. PubMed ID: 34930528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optogenetic Stimulation Using Anion Channelrhodopsin (GtACR1) Facilitates Termination of Reentrant Arrhythmias With Low Light Energy Requirements: A Computational Study.
    Ochs AR; Karathanos TV; Trayanova NA; Boyle PM
    Front Physiol; 2021; 12():718622. PubMed ID: 34526912
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anion-conducting channelrhodopsins with tuned spectra and modified kinetics engineered for optogenetic manipulation of behavior.
    Wietek J; Rodriguez-Rozada S; Tutas J; Tenedini F; Grimm C; Oertner TG; Soba P; Hegemann P; Wiegert JS
    Sci Rep; 2017 Nov; 7(1):14957. PubMed ID: 29097684
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combining different ion-selective channelrhodopsins to control water flux by light.
    Lin F; Tang R; Zhang C; Scholz N; Nagel G; Gao S
    Pflugers Arch; 2023 Dec; 475(12):1375-1385. PubMed ID: 37670155
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of absorption wavelength shifts in anion channelrhodopsin-1 mutants.
    Tsujimura M; Noji T; Saito K; Kojima K; Sudo Y; Ishikita H
    Biochim Biophys Acta Bioenerg; 2021 Feb; 1862(2):148349. PubMed ID: 33248117
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Channel Gating in Kalium Channelrhodopsin Slow Mutants.
    Sineshchekov OA; Govorunova EG; Li H; Wang Y; Spudich JL
    J Mol Biol; 2024 Mar; 436(5):168298. PubMed ID: 37802216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.