BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 38463035)

  • 1. Genetic dissection of mutagenic repair and T-DNA capture at CRISPR-induced DNA breaks in
    Kamoen L; Kralemann LEM; van Schendel R; van Tol N; Hooykaas PJJ; de Pater S; Tijsterman M
    PNAS Nexus; 2024 Mar; 3(3):pgae094. PubMed ID: 38463035
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutational signatures of non-homologous and polymerase theta-mediated end-joining in embryonic stem cells.
    Schimmel J; Kool H; van Schendel R; Tijsterman M
    EMBO J; 2017 Dec; 36(24):3634-3649. PubMed ID: 29079701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinct mechanisms for genomic attachment of the 5' and 3' ends of Agrobacterium T-DNA in plants.
    Kralemann LEM; de Pater S; Shen H; Kloet SL; van Schendel R; Hooykaas PJJ; Tijsterman M
    Nat Plants; 2022 May; 8(5):526-534. PubMed ID: 35534719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulating mutational outcomes and improving precise gene editing at CRISPR-Cas9-induced breaks by chemical inhibition of end-joining pathways.
    Schimmel J; Muñoz-Subirana N; Kool H; van Schendel R; van der Vlies S; Kamp JA; de Vrij FMS; Kushner SA; Smith GCM; Boulton SJ; Tijsterman M
    Cell Rep; 2023 Feb; 42(2):112019. PubMed ID: 36701230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR/Cas9-Induced Double-Strand Break Repair in Arabidopsis Nonhomologous End-Joining Mutants.
    Shen H; Strunks GD; Klemann BJ; Hooykaas PJ; de Pater S
    G3 (Bethesda); 2017 Jan; 7(1):193-202. PubMed ID: 27866150
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-Strand Annealing Plays a Major Role in Double-Strand DNA Break Repair following CRISPR-Cas9 Cleavage in
    Zhang WW; Matlashewski G
    mSphere; 2019 Aug; 4(4):. PubMed ID: 31434745
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonhomologous end joining as key to CRISPR/Cas-mediated plant chromosome engineering.
    Gehrke F; Schindele A; Puchta H
    Plant Physiol; 2022 Mar; 188(4):1769-1779. PubMed ID: 34893907
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Target residence of Cas9-sgRNA influences DNA double-strand break repair pathway choices in CRISPR/Cas9 genome editing.
    Liu SC; Feng YL; Sun XN; Chen RD; Liu Q; Xiao JJ; Zhang JN; Huang ZC; Xiang JF; Chen GQ; Yang Y; Lou C; Li HD; Cai Z; Xu SM; Lin H; Xie AY
    Genome Biol; 2022 Aug; 23(1):165. PubMed ID: 35915475
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Poly(ADP) ribose polymerase promotes DNA polymerase theta-mediated end joining by activation of end resection.
    Luedeman ME; Stroik S; Feng W; Luthman AJ; Gupta GP; Ramsden DA
    Nat Commun; 2022 Aug; 13(1):4547. PubMed ID: 35927262
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gene targeting in polymerase theta-deficient Arabidopsis thaliana.
    van Tol N; van Schendel R; Bos A; van Kregten M; de Pater S; Hooykaas PJJ; Tijsterman M
    Plant J; 2022 Jan; 109(1):112-125. PubMed ID: 34713516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Agrobacterium may delay plant nonhomologous end-joining DNA repair via XRCC4 to favor T-DNA integration.
    Vaghchhipawala ZE; Vasudevan B; Lee S; Morsy MR; Mysore KS
    Plant Cell; 2012 Oct; 24(10):4110-23. PubMed ID: 23064322
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Marker-free quantification of repair pathway utilization at Cas9-induced double-strand breaks.
    Feng W; Simpson DA; Cho JE; Carvajal-Garcia J; Smith CM; Headley KM; Hathaway N; Ramsden DA; Gupta GP
    Nucleic Acids Res; 2021 May; 49(9):5095-5105. PubMed ID: 33963863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular analysis of the role of polymerase theta in gene targeting in Arabidopsis thaliana.
    Kralemann LEM; van Tol N; Hooykaas PJJ; Tijsterman M
    Plant J; 2024 Apr; 118(1):255-262. PubMed ID: 38402589
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Templated Insertions: A Smoking Gun for Polymerase Theta-Mediated End Joining.
    Schimmel J; van Schendel R; den Dunnen JT; Tijsterman M
    Trends Genet; 2019 Sep; 35(9):632-644. PubMed ID: 31296341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR/Cas9-Based Genome Editing Toolbox for Arabidopsis thaliana.
    Miki D; Zinta G; Zhang W; Peng F; Feng Z; Zhu JK
    Methods Mol Biol; 2021; 2200():121-146. PubMed ID: 33175375
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana.
    Fauser F; Schiml S; Puchta H
    Plant J; 2014 Jul; 79(2):348-59. PubMed ID: 24836556
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconstitution of Mycobacterium marinum Nonhomologous DNA End Joining Pathway in
    Zhang WW; Wright DG; Harrison L; Matlashewski G
    mSphere; 2022 Jun; 7(3):e0015622. PubMed ID: 35695492
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deletion-bias in DNA double-strand break repair differentially contributes to plant genome shrinkage.
    Vu GTH; Cao HX; Reiss B; Schubert I
    New Phytol; 2017 Jun; 214(4):1712-1721. PubMed ID: 28245065
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The biological principles and advanced applications of DSB repair in CRISPR-mediated yeast genome editing.
    Bai W; Huang M; Li C; Li J
    Synth Syst Biotechnol; 2023 Dec; 8(4):584-596. PubMed ID: 37711546
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR/Cas9 and Agrobacterium tumefaciens virulence proteins synergistically increase efficiency of precise genome editing via homology directed repair in plants.
    Tang Y; Zhang Z; Yang Z; Wu J
    J Exp Bot; 2023 Jun; 74(12):3518-3530. PubMed ID: 36919203
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.