These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 38463158)

  • 41. Tuberculosis vaccine development at a divide.
    Kaufmann SH
    Curr Opin Pulm Med; 2014 May; 20(3):294-300. PubMed ID: 24626237
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mycobacterium tuberculosis: approach to development of improved strategies for disease control through vaccination and immunodiagnosis.
    Mirlekar B; Pathak S; Pathade G
    Indian J Lepr; 2013; 85(2):65-78. PubMed ID: 24236365
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A comparison of antigen-specific T cell responses induced by six novel tuberculosis vaccine candidates.
    Rodo MJ; Rozot V; Nemes E; Dintwe O; Hatherill M; Little F; Scriba TJ
    PLoS Pathog; 2019 Mar; 15(3):e1007643. PubMed ID: 30830940
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A rational vaccine pipeline for tuberculosis.
    Brennan MJ; Stone MR; Evans T
    Int J Tuberc Lung Dis; 2012 Dec; 16(12):1566-73. PubMed ID: 23131253
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Systematic review of mathematical models exploring the epidemiological impact of future TB vaccines.
    Harris RC; Sumner T; Knight GM; White RG
    Hum Vaccin Immunother; 2016 Nov; 12(11):2813-2832. PubMed ID: 27448625
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The present and future of tuberculosis vaccinations.
    Principi N; Esposito S
    Tuberculosis (Edinb); 2015 Jan; 95(1):6-13. PubMed ID: 25458613
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Key recent advances in TB vaccine development and understanding of protective immune responses against Mycobacterium tuberculosis.
    Scriba TJ; Netea MG; Ginsberg AM
    Semin Immunol; 2020 Aug; 50():101431. PubMed ID: 33279383
    [TBL] [Abstract][Full Text] [Related]  

  • 48. "The Impact of Mycobacterium tuberculosis Immune Evasion on Protective Immunity: Implications for TB Vaccine Design" - Meeting report.
    Boggiano C; Eichelberg K; Ramachandra L; Shea J; Ramakrishnan L; Behar S; Ernst JD; Porcelli SA; Maeurer M; Kornfeld H
    Vaccine; 2017 Jun; 35(27):3433-3440. PubMed ID: 28476627
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Tuberculosis Vaccine Development: Progress in Clinical Evaluation.
    Sable SB; Posey JE; Scriba TJ
    Clin Microbiol Rev; 2019 Dec; 33(1):. PubMed ID: 31666281
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Peptide-Based Vaccines for Tuberculosis.
    Gong W; Pan C; Cheng P; Wang J; Zhao G; Wu X
    Front Immunol; 2022; 13():830497. PubMed ID: 35173740
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Vaccination strategies to prevent tuberculosis in the new millennium: from BCG to new vaccine candidates.
    Franco-Paredes C; Rouphael N; del Rio C; Santos-Preciado JI
    Int J Infect Dis; 2006 Mar; 10(2):93-102. PubMed ID: 16377228
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Current and novel approaches to vaccine development against tuberculosis.
    Cayabyab MJ; Macovei L; Campos-Neto A
    Front Cell Infect Microbiol; 2012; 2():154. PubMed ID: 23230563
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Addressing mechanism bias in model-based impact forecasts of new tuberculosis vaccines.
    Tovar M; Moreno Y; Sanz J
    Nat Commun; 2023 Sep; 14(1):5312. PubMed ID: 37658078
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Impact of proteomics on anti-Mycobacterium tuberculosis (MTB) vaccine development.
    Jagusztyn-Krynicka EK; Roszczenko P; Grabowska A
    Pol J Microbiol; 2009; 58(4):281-7. PubMed ID: 20380137
    [TBL] [Abstract][Full Text] [Related]  

  • 55.
    Jia Q; Masleša-Galić S; Nava S; Horwitz MA
    mBio; 2022 Jun; 13(3):e0068722. PubMed ID: 35642945
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Impact of Targeted Tuberculosis Vaccination Among a Mining Population in South Africa: A Model-Based Study.
    Shrestha S; Chihota V; White RG; Grant AD; Churchyard GJ; Dowdy DW
    Am J Epidemiol; 2017 Dec; 186(12):1362-1369. PubMed ID: 29253139
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Tuberculosis vaccines: time to think about the next generation.
    Kaufmann SH
    Semin Immunol; 2013 Apr; 25(2):172-81. PubMed ID: 23706597
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Development of antituberculous drugs: current status and future prospects].
    Tomioka H; Namba K
    Kekkaku; 2006 Dec; 81(12):753-74. PubMed ID: 17240921
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Childhood tuberculosis: epidemiology, diagnosis, treatment, and vaccination.
    Tsai KS; Chang HL; Chien ST; Chen KL; Chen KH; Mai MH; Chen KT
    Pediatr Neonatol; 2013 Oct; 54(5):295-302. PubMed ID: 23597517
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Live attenuated TB vaccines representing the three modern Mycobacterium tuberculosis lineages reveal that the Euro-American genetic background confers optimal vaccine potential.
    Pérez I; Uranga S; Sayes F; Frigui W; Samper S; Arbués A; Aguiló N; Brosch R; Martín C; Gonzalo-Asensio J
    EBioMedicine; 2020 May; 55():102761. PubMed ID: 32361249
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.