These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 38463266)

  • 1. Modeling the Effects of Varying the Ti Concentration on the Mechanical Properties of Cu-Ti Alloys.
    Fotopoulos V; O'Hern CS; Shattuck MD; Shluger AL
    ACS Omega; 2024 Mar; 9(9):10286-10298. PubMed ID: 38463266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A more defective substrate leads to a less defective passive layer: Enhancing the mechanical strength, corrosion resistance and anti-inflammatory response of the low-modulus Ti-45Nb alloy by grain refinement.
    Hu N; Xie L; Liao Q; Gao A; Zheng Y; Pan H; Tong L; Yang D; Gao N; Starink MJ; Chu PK; Wang H
    Acta Biomater; 2021 May; 126():524-536. PubMed ID: 33684537
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atomic Study on Tension Behaviors of Sub-10 nm NanoPolycrystalline Cu-Ta Alloy.
    Li W; Wang X; Gao L; Lu Y; Wang W
    Materials (Basel); 2019 Nov; 12(23):. PubMed ID: 31783475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Ga on the structural, mechanical and electronic properties of β-Ti-45Nb alloy by experiments and ab initio calculations.
    Alberta LA; Fortouna Y; Vishnu J; Pilz S; Gebert A; Lekka C; Nielsch K; Calin M
    J Mech Behav Biomed Mater; 2023 Apr; 140():105728. PubMed ID: 36827933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Effect of Phase Separation on the Mechanical Behavior of the Co-Cr-Cu-Fe-Ni High-Entropy Alloy.
    Liu H; Peng C; Li X; Wang S; Wang L
    Materials (Basel); 2021 Oct; 14(21):. PubMed ID: 34772051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical Properties of Ti-Nb-Cu Alloys for Dental Machining Applications.
    Takahashi M; Sato K; Togawa G; Takada Y
    J Funct Biomater; 2022 Nov; 13(4):. PubMed ID: 36547524
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical properties and microstructures of cast Ti-Cu alloys.
    Kikuchi M; Takada Y; Kiyosue S; Yoda M; Woldu M; Cai Z; Okuno O; Okabe T
    Dent Mater; 2003 May; 19(3):174-81. PubMed ID: 12628428
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Cu Content on the Precipitation Behaviors, Mechanical and Corrosion Properties of As-Cast Ti-Cu Alloys.
    Wang Z; Fu B; Wang Y; Dong T; Li J; Li G; Zhao X; Liu J; Zhang G
    Materials (Basel); 2022 Feb; 15(5):. PubMed ID: 35268932
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation on mechanical behaviors of Cu-Ni binary alloy nanopillars: a molecular dynamics study.
    Rahman MM; Islam MS; Anjum N
    J Mol Model; 2020 Jul; 26(8):214. PubMed ID: 32705399
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Effects of Grain Boundary Misorientation on the Mechanical Properties and Mechanism of Plastic Deformation of Ni/Ni
    Ding J; Zhang SL; Tong Q; Wang LS; Huang X; Song K; Lu SQ
    Materials (Basel); 2020 Dec; 13(24):. PubMed ID: 33333827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Corrosion Properties of Ultra-Fine-Grained Cu-3 wt%Ti Alloy Fabricated by Combination of Hot Rolling and Aging Treatment.
    Lee CS; Kim MG; Kim GH; Kim KT; Hwang D; Kim HS
    J Nanosci Nanotechnol; 2019 Oct; 19(10):6487-6492. PubMed ID: 31026982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Effect of Copper Content on the Mechanical and Tribological Properties of Hypo-, Hyper- and Eutectoid Ti-Cu Alloys.
    Xu Y; Jiang J; Yang Z; Zhao Q; Chen Y; Zhao Y
    Materials (Basel); 2020 Aug; 13(15):. PubMed ID: 32756320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of Zinc Content on the Mechanical Behaviors of Cu-Zn Alloys by Molecular Dynamics.
    Jang HW; Hong JW
    Materials (Basel); 2020 Apr; 13(9):. PubMed ID: 32365697
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of extrusion processing on the microstructure, mechanical properties, biocorrosion properties and antibacterial properties of Ti-Cu sintered alloys.
    Zhang E; Li S; Ren J; Zhang L; Han Y
    Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():760-8. PubMed ID: 27612770
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of Ternary Ti-Ag-Cu Alloys with Excellent Mechanical Properties and Antibiofilm Activity.
    Togawa G; Takahashi M; Tada H; Takada Y
    Materials (Basel); 2022 Dec; 15(24):. PubMed ID: 36556817
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical, thermal, and physical properties of Mg-Ca compounds in the framework of the modified embedded-atom method.
    Groh S
    J Mech Behav Biomed Mater; 2015 Feb; 42():88-99. PubMed ID: 25460929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved pre-osteoblast response and mechanical compatibility of ultrafine-grained Ti-13Nb-13Zr alloy.
    Park CH; Lee CS; Kim YJ; Jang JH; Suh JY; Park JW
    Clin Oral Implants Res; 2011 Jul; 22(7):735-742. PubMed ID: 21121961
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Precipitation Behavior during Aging Operations in an Ultrafine-Grained Al-Cu-Mg Alloy Produced by High-Strain-Rate Processing.
    Zhang L; Luo H
    Materials (Basel); 2022 Dec; 15(23):. PubMed ID: 36500183
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of silicon content on the microstructure evolution, mechanical properties, and biocompatibility of β-type TiNbZrTa alloys fabricated by laser powder bed fusion.
    Luo X; Yang C; Li RY; Wang H; Lu HZ; Song T; Ma HW; Li DD; Gebert A; Li YY
    Biomater Adv; 2022 Feb; 133():112625. PubMed ID: 35523650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of Minor Er Additions on the Microstructures and Mechanical Properties of Cast Al-Cu-Mg-Ag Alloys.
    Xie H; Zhao J; Cao J; Luo L; Guo S; Ou L; Liu Z; Bai S
    Materials (Basel); 2021 Jul; 14(15):. PubMed ID: 34361405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.