These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 38463287)

  • 1. Selective Oxidation of Glycerol to Lactic Acid Catalyzed by CuO/Activated Carbon and Reaction Kinetics.
    Li S; Li S; Wang Y; Tang C; Qiu L; Yu S
    ACS Omega; 2024 Mar; 9(9):10583-10591. PubMed ID: 38463287
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conversion of Glycerol to Lactic Acid Catalyzed by Different-Sized Cu₂O Nanoparticles in NaOH Aqueous Solution.
    Shen L; Yin H; Yin H; Liu S; Wang A
    J Nanosci Nanotechnol; 2017 Jan; 17(1):773-79. PubMed ID: 29634164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CuO/CeO
    Palacio R; Torres S; Royer S; Mamede AS; López D; Hernández D
    Dalton Trans; 2018 Mar; 47(13):4572-4582. PubMed ID: 29513330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Synthesis of Glycerol Carbonate from Glycerol and Carbon Dioxide over Supported CuO-Based Nanoparticle Catalyst.
    Al-Kurdhani JMH; Wang H
    Molecules; 2023 May; 28(10):. PubMed ID: 37241907
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalytic Conversion of Glycerol to Lactic Acid Over Hydroxyapatite-Supported Metallic Ni
    Qiu L; Yin H; Yin H; Wang A
    J Nanosci Nanotechnol; 2018 Jul; 18(7):4734-4745. PubMed ID: 29442652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glycerol Conversion to Lactic Acid with Unsupported Copper Salts and Bulk Cupric Oxide in Aqueous Alkali Media.
    Li KT; Li HH
    Appl Biochem Biotechnol; 2020 May; 191(1):125-134. PubMed ID: 31960368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glycerol Valorization Towards Glycolic Acid Production Over Cu-Based Biochar Catalyst.
    Liao S; Tian Q; Xiao Y; Qin D; Li J; Hu C
    ChemSusChem; 2022 Dec; 15(23):e202201537. PubMed ID: 36161773
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalytic Conversion of Glycerol to Lactic Acid Over Metallic Copper Nanoparticles and Reaction Kinetics.
    Yin H; Yin H; Wang A; Shen L; Liu Y; Zheng Y
    J Nanosci Nanotechnol; 2017 Feb; 17(2):1255-266. PubMed ID: 29683300
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biosynthesis of Au/CuO catalyst with
    Yuan Z; Liu H; Wang Y; Ke Y
    Nanotechnology; 2023 Jun; 34(36):. PubMed ID: 37307796
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Supported-catalyst CuO/AC with reduced cost and enhanced activity for the degradation of heavy oil refinery wastewater by catalytic ozonation process.
    Wang W; Yao H; Yue L
    Environ Sci Pollut Res Int; 2020 Mar; 27(7):7199-7210. PubMed ID: 31879887
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facile Microwave Synthesis of Hierarchical Porous Copper Oxide and Its Catalytic Activity and Kinetics for Carbon Monoxide Oxidation.
    Zedan AF; AlJaber AS; El-Shall MS
    ACS Omega; 2022 Dec; 7(48):44021-44032. PubMed ID: 36506176
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gold Nanoparticles Supported on Urchin-Like CuO: Synthesis, Characterization, and Their Catalytic Performance for CO Oxidation.
    Dong F; Guo Y; Zhang D; Zhu B; Huang W; Zhang S
    Nanomaterials (Basel); 2019 Dec; 10(1):. PubMed ID: 31892172
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of calcination temperature of support on Au/CuO-ZrO
    Wang Y; Yuan D; Luo J; Pu Y; Li F; Xiao F; Zhao N
    J Colloid Interface Sci; 2020 Feb; 560():130-137. PubMed ID: 31655403
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanosized CuO and ZnO catalyst supported on titanium chip for conversion of carbon dioxide to methyl alcohol.
    Seo HS; Park CM; Kim KJ; Jeong WJ; Chung MC; Jung SC; Kim SC; Ahn HG
    J Nanosci Nanotechnol; 2013 Aug; 13(8):5823-6. PubMed ID: 23882842
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A review of the catalytic conversion of glycerol to lactic acid in the presence of aqueous base.
    Akbulut D; Özkar S
    RSC Adv; 2022 Jun; 12(29):18864-18883. PubMed ID: 35873329
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Weak Metal-Support Interaction over CuO/TiO
    Zou M; Wang M; Wang J; Zhu D; Liu J; Wang J; Xiao Q; Chen J
    Nanomaterials (Basel); 2023 Jun; 13(12):. PubMed ID: 37368289
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing the Low-Temperature CO Oxidation over CuO-Based α-MnO
    Cui Y; Song H; Shi Y; Ge P; Chen M; Xu L
    Nanomaterials (Basel); 2022 Jun; 12(12):. PubMed ID: 35745420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In-situ preparation of sulfonated carbonaceous copper oxide-zirconia nanocomposite as a novel and recyclable solid acid catalyst for reduction of 4-nitrophenol.
    Farrag M
    Sci Rep; 2023 Jun; 13(1):10123. PubMed ID: 37349346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective Electrochemical Conversion of Glycerol to Glycolic Acid and Lactic Acid on a Mixed Carbon-Black Activated Carbon Electrode in a Single Compartment Electrochemical Cell.
    Lee CS; Aroua MK; Wan Daud WA; Cognet P; Pérès Y; Ajeel MA
    Front Chem; 2019; 7():110. PubMed ID: 30931294
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hetero-metal cation control of CuO nanostructures and their high catalytic performance for CO oxidation.
    Huang H; Zhang L; Wu K; Yu Q; Chen R; Yang H; Peng X; Ye Z
    Nanoscale; 2012 Dec; 4(24):7832-41. PubMed ID: 23151539
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.