BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 38463341)

  • 1. Composite Flame Retardants Based on Conjugated Microporous Polymer Hollow Nanospheres with Excellent Flame Retardancy.
    Ma C; Su M; Zhu Z
    ACS Omega; 2024 Mar; 9(9):10478-10487. PubMed ID: 38463341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facile preparation of composite flame retardantbased on conjugated microporous polymer hollow spheres.
    Wu S; Zhu Z; Liu C; Su Y; Wang F; Bai W; Sun H; Liang W; Li A
    J Colloid Interface Sci; 2021 Mar; 586():152-162. PubMed ID: 33183755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnesium hydroxide coated hollow glass microspheres/chitosan composite aerogels with excellent thermal insulation and flame retardancy.
    Zhu Z; Niu Y; Wang S; Su M; Long Y; Sun H; Liang W; Li A
    J Colloid Interface Sci; 2022 Apr; 612():35-42. PubMed ID: 34974256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of DOPO-KH550 modified hollow glass microspheres/PVA composite aerogel for thermal insulation and flame retardancy.
    Li M; Zhu Z; Jiao R; Chen Y; Cao X; Sun H; Li J; Li A
    J Colloid Interface Sci; 2024 Jan; 654(Pt A):719-730. PubMed ID: 37866044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation of Naphthalene-Based Flame Retardant for High Fire Safety and Smoke Suppression of Epoxy Resin.
    Huang Z; Li F; Huang M; Meng W; Rao W; Lei Y; Yu C
    Molecules; 2023 May; 28(11):. PubMed ID: 37298763
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conjugated Microporous Polymer Aerogels Encapsulated within Hydroxyapatite Nanowires Exhibit Good Thermal Insulation and Flame-Retardant Properties.
    Chen Y; Zhu Z; Li M; Zhang J; Cao X; Fu R; Xing G; Sun H; Li J; Li A
    Langmuir; 2024 Jun; ():. PubMed ID: 38920388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing Flame Retardancy and Smoke Suppression in Epoxy Resin Composites with Sulfur-Phosphorous Reactive Flame Retardant.
    Ma X; Kang N; Zhang Y; Min Y; Yang J; Ban D; Zhao W
    Molecules; 2023 Dec; 29(1):. PubMed ID: 38202810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improvement the Flame Retardancy and Thermal Conductivity of Epoxy Composites via Melamine Polyphosphate-Modified Carbon Nanotubes.
    Shi X; Luo S; Du X; Li Q; Cheng S
    Polymers (Basel); 2022 Jul; 14(15):. PubMed ID: 35956608
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synergetic Improvement in Thermal Conductivity and Flame Retardancy of Epoxy/Silver Nanowires Composites by Incorporating "Branch-Like" Flame-Retardant Functionalized Graphene.
    Feng Y; Li X; Zhao X; Ye Y; Zhou X; Liu H; Liu C; Xie X
    ACS Appl Mater Interfaces; 2018 Jun; 10(25):21628-21641. PubMed ID: 29856592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon Nanotube-Based Intumescent Flame Retardants Achieve High-Efficiency Flame Retardancy and Simultaneously Avoid Mechanical Property Loss.
    Qu Q; Xu J; Wang H; Yu Y; Dong Q; Zhang X; He Y
    Polymers (Basel); 2023 Mar; 15(6):. PubMed ID: 36987187
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hierarchically porous SiO
    Li ME; Wang SX; Han LX; Yuan WJ; Cheng JB; Zhang AN; Zhao HB; Wang YZ
    J Hazard Mater; 2019 Aug; 375():61-69. PubMed ID: 31048136
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recyclable, malleable and intrinsically flame-retardant epoxy resin with catalytic transesterification.
    Chen JH; Lu JH; Pu XL; Chen L; Wang YZ
    Chemosphere; 2022 May; 294():133778. PubMed ID: 35093421
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A graphene@Cu-MOF hybrid synthesized by mechanical ball milling method and its flame retardancy and smoke suppression effect on EP.
    Zhang G; Wu W; Yao M; Cui Y; Jiao Y; Qu H; Xu J
    Chemosphere; 2024 Jan; 346():140521. PubMed ID: 37925028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Superior flame retardancy and smoke suppression of epoxy-based composites with phosphorus/nitrogen co-doped graphene.
    Feng Y; He C; Wen Y; Ye Y; Zhou X; Xie X; Mai YW
    J Hazard Mater; 2018 Mar; 346():140-151. PubMed ID: 29257978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of High-Transparency Phosphenanthrene-Based Flame Retardants and Studies of Their Flame-Retardant Properties.
    Zhang T; Liu Y
    Polymers (Basel); 2023 Dec; 15(24):. PubMed ID: 38139917
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interfacial engineering to construct P-loaded hollow nanohybrids for flame-retardant and high-performance epoxy resins.
    Yu C; Wu T; Yang F; Wang H; Rao W; Zhao HB
    J Colloid Interface Sci; 2022 Dec; 628(Pt B):851-863. PubMed ID: 36029599
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    Vahabi H; Movahedifar E; Kandola BK; Saeb MR
    Polymers (Basel); 2023 May; 15(11):. PubMed ID: 37299221
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Facile synthesis of a flame retardant melamine phenylphosphate and its epoxy resin composites with simultaneously improved flame retardancy, smoke suppression and water resistance.
    Shi Y; Wang Z; Zhou JA
    RSC Adv; 2018 Nov; 8(68):39214-39221. PubMed ID: 35558334
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly Efficient, Environmentally Friendly Lignin-Based Flame Retardant Used in Epoxy Resin.
    Dai P; Liang M; Ma X; Luo Y; He M; Gu X; Gu Q; Hussain I; Luo Z
    ACS Omega; 2020 Dec; 5(49):32084-32093. PubMed ID: 33344863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A bio-based phosphaphenanthrene-containing derivative modified epoxy thermosets with good flame retardancy, high mechanical properties and transparency.
    Peng W; Xu YX; Nie SB; Yang W
    RSC Adv; 2021 Sep; 11(49):30943-30954. PubMed ID: 35498916
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.