These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 38463456)

  • 21. Study on the effects of white rice husk ash and fibrous materials additions on some properties of fiber-cement composites.
    Hamzeh Y; Ziabari KP; Torkaman J; Ashori A; Jafari M
    J Environ Manage; 2013 Mar; 117():263-7. PubMed ID: 23391756
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Physical Properties of Concrete Containing Graphene Oxide Nanosheets.
    Wu YY; Que L; Cui Z; Lambert P
    Materials (Basel); 2019 May; 12(10):. PubMed ID: 31130691
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Difference in Strength Development between Cement-Treated Sand and Mortar with Various Cement Types and Curing Temperatures.
    Ho LS; Nakarai K; Eguchi K; Ogawa Y
    Materials (Basel); 2020 Nov; 13(21):. PubMed ID: 33171930
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Water treatment sludge conversion to biochar as cementitious material in cement composite.
    De Carvalho Gomes S; Zhou JL; Zeng X; Long G
    J Environ Manage; 2022 Mar; 306():114463. PubMed ID: 35007797
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Analysis of biochar-mortar composite as a humidity control material to improve the building energy and hygrothermal performance.
    Park JH; Kim YU; Jeon J; Yun BY; Kang Y; Kim S
    Sci Total Environ; 2021 Jun; 775():145552. PubMed ID: 33611181
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Behavior of Biochar-Modified Cementitious Composites Exposed to High Temperatures.
    Yang X; Lin RS; Han Y; Wang XY
    Materials (Basel); 2021 Sep; 14(18):. PubMed ID: 34576637
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nanocomposites Derived from Construction and Demolition Waste for Cement: X-ray Diffraction, Spectroscopic and Mechanical Investigations.
    Rada R; Manea DL; Nowakowski A; Rada S
    Nanomaterials (Basel); 2024 May; 14(10):. PubMed ID: 38786845
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Unconfined Compressive Strength of Cement-Stabilized Qiantang River Silty Clay.
    Zhang L; Li Y; Wei X; Liang X; Zhang J; Li X
    Materials (Basel); 2024 Feb; 17(5):. PubMed ID: 38473554
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Effects of Fineness and TEA-Based Chemical Admixture on Early Strength Development of Concrete in Construction Site Applications.
    Lee T; Lee J; Choi H; Lee DE
    Materials (Basel); 2020 Apr; 13(9):. PubMed ID: 32357476
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Use of Biosilica to Increase the Compressive Strength of Cement Mortar: The Effect of the Mixing Method.
    Muradyan NG; Arzumanyan AA; Kalantaryan MA; Vardanyan YV; Yeranosyan M; Ulewicz M; Laroze D; Barseghyan MG
    Materials (Basel); 2023 Aug; 16(16):. PubMed ID: 37629807
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Use of waste ash from palm oil industry in concrete.
    Tangchirapat W; Saeting T; Jaturapitakkul C; Kiattikomol K; Siripanichgorn A
    Waste Manag; 2007; 27(1):81-8. PubMed ID: 16497498
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Strength Characteristics of Alkali-Activated Slag Mortars with the Addition of PET Flakes.
    Kocot A; Ćwirzeń A; Ponikiewski T; Katzer J
    Materials (Basel); 2021 Oct; 14(21):. PubMed ID: 34771797
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sustainable Use of Waste Oyster Shell Powders in a Ternary Supplementary Cementitious Material System for Green Concrete.
    Liu S; Zhang Y; Liu B; Zou Z; Liu Q; Teng Y; Zhang LV
    Materials (Basel); 2022 Jul; 15(14):. PubMed ID: 35888354
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluating the Influence of Elevated Temperature on Compressive Strength of Date-Palm-Fiber-Reinforced Concrete Using Response Surface Methodology.
    Adamu M; Ibrahim YE; Alanazi H
    Materials (Basel); 2022 Nov; 15(22):. PubMed ID: 36431614
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A systematic study on sustainable low carbon cement - Superplasticizer interaction: Fresh, mechanical, microstructural and durability characteristics.
    Bhandari I; Kumar R; Sofi A; Nighot NS
    Heliyon; 2023 Sep; 9(9):e19176. PubMed ID: 37674823
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Use of coir pith particles in composites with Portland cement.
    Brasileiro GA; Vieira JA; Barreto LS
    J Environ Manage; 2013 Dec; 131():228-38. PubMed ID: 24184526
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Review of the Mechanical Properties and Durability of Ecological Concretes in a Cold Climate in Comparison to Standard Ordinary Portland Cement-Based Concrete.
    Kothari A; Habermehl-Cwirzen K; Hedlund H; Cwirzen A
    Materials (Basel); 2020 Aug; 13(16):. PubMed ID: 32781636
    [TBL] [Abstract][Full Text] [Related]  

  • 38. CO
    Hameed R; Seo J; Park S; Amr IT; Lee HK
    Materials (Basel); 2020 Oct; 13(20):. PubMed ID: 33086553
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of Portland cement for use as a dental restorative material.
    Camilleri J; Montesin FE; Curtis RV; Ford TR
    Dent Mater; 2006 Jun; 22(6):569-75. PubMed ID: 16221489
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rapid solidification of Portland cement/polyacrylamide hydrogel (PC/PAM) composites for diverse wastewater treatments.
    Ye S; Feng P; Zhang W
    RSC Adv; 2020 May; 10(32):18936-18944. PubMed ID: 35518298
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.