BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 38463485)

  • 1. Combining metabolic flux analysis with proteomics to shed light on the metabolic flexibility: the case of
    Marbehan X; Roger M; Fournier F; Infossi P; Guedon E; Delecourt L; Lebrun R; Giudici-Orticoni MT; Delaunay S
    Front Microbiol; 2024; 15():1336360. PubMed ID: 38463485
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Function of formate dehydrogenases in Desulfovibrio vulgaris Hildenborough energy metabolism.
    da Silva SM; Voordouw J; Leitão C; Martins M; Voordouw G; Pereira IAC
    Microbiology (Reading); 2013 Aug; 159(Pt 8):1760-1769. PubMed ID: 23728629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DsrC is involved in fermentative growth and interacts directly with the FlxABCD-HdrABC complex in Desulfovibrio vulgaris Hildenborough.
    Ferreira D; Venceslau SS; Bernardino R; Preto A; Zhang L; Waldbauer JR; Leavitt WD; Pereira IAC
    Environ Microbiol; 2023 May; 25(5):962-976. PubMed ID: 36602077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification and Characterization of the Major Porin of Desulfovibrio vulgaris Hildenborough.
    Zeng L; Wooton E; Stahl DA; Walian PJ
    J Bacteriol; 2017 Dec; 199(23):. PubMed ID: 28874410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy metabolism in Desulfovibrio vulgaris Hildenborough: insights from transcriptome analysis.
    Pereira PM; He Q; Valente FM; Xavier AV; Zhou J; Pereira IA; Louro RO
    Antonie Van Leeuwenhoek; 2008 May; 93(4):347-62. PubMed ID: 18060515
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gene expression analysis of energy metabolism mutants of Desulfovibrio vulgaris Hildenborough indicates an important role for alcohol dehydrogenase.
    Haveman SA; Brunelle V; Voordouw JK; Voordouw G; Heidelberg JF; Rabus R
    J Bacteriol; 2003 Aug; 185(15):4345-53. PubMed ID: 12867442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduction of the amount of periplasmic hydrogenase in Desulfovibrio vulgaris (Hildenborough) with antisense RNA: direct evidence for an important role of this hydrogenase in lactate metabolism.
    van den Berg WA; van Dongen WM; Veeger C
    J Bacteriol; 1991 Jun; 173(12):3688-94. PubMed ID: 1711025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The genome sequence of the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough.
    Heidelberg JF; Seshadri R; Haveman SA; Hemme CL; Paulsen IT; Kolonay JF; Eisen JA; Ward N; Methe B; Brinkac LM; Daugherty SC; Deboy RT; Dodson RJ; Durkin AS; Madupu R; Nelson WC; Sullivan SA; Fouts D; Haft DH; Selengut J; Peterson JD; Davidsen TM; Zafar N; Zhou L; Radune D; Dimitrov G; Hance M; Tran K; Khouri H; Gill J; Utterback TR; Feldblyum TV; Wall JD; Voordouw G; Fraser CM
    Nat Biotechnol; 2004 May; 22(5):554-9. PubMed ID: 15077118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microcalorimetric studies of the growth of sulfate-reducing bacteria: energetics of Desulfovibrio vulgaris growth.
    Traore AS; Hatchikian CE; Belaich JP; Le Gall J
    J Bacteriol; 1981 Jan; 145(1):191-9. PubMed ID: 7462143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative metabolic modeling of multiple sulfate-reducing prokaryotes reveals versatile energy conservation mechanisms.
    Tang WT; Hao TW; Chen GH
    Biotechnol Bioeng; 2021 Jul; 118(7):2676-2693. PubMed ID: 33844295
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Key Metabolites and Mechanistic Changes for Salt Tolerance in an Experimentally Evolved Sulfate-Reducing Bacterium,
    Zhou A; Lau R; Baran R; Ma J; von Netzer F; Shi W; Gorman-Lewis D; Kempher ML; He Z; Qin Y; Shi Z; Zane GM; Wu L; Bowen BP; Northen TR; Hillesland KL; Stahl DA; Wall JD; Arkin AP; Zhou J
    mBio; 2017 Nov; 8(6):. PubMed ID: 29138306
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Post-translational modifications of Desulfovibrio vulgaris Hildenborough sulfate reduction pathway proteins.
    Gaucher SP; Redding AM; Mukhopadhyay A; Keasling JD; Singh AK
    J Proteome Res; 2008 Jun; 7(6):2320-31. PubMed ID: 18416566
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptomic and proteomic analyses of Desulfovibrio vulgaris biofilms: carbon and energy flow contribute to the distinct biofilm growth state.
    Clark ME; He Z; Redding AM; Joachimiak MP; Keasling JD; Zhou JZ; Arkin AP; Mukhopadhyay A; Fields MW
    BMC Genomics; 2012 Apr; 13():138. PubMed ID: 22507456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The adaptive genome of Desulfovibrio vulgaris Hildenborough.
    Santana M; Crasnier-Mednansky M
    FEMS Microbiol Lett; 2006 Jul; 260(2):127-33. PubMed ID: 16842335
    [TBL] [Abstract][Full Text] [Related]  

  • 15. σ54-dependent regulome in Desulfovibrio vulgaris Hildenborough.
    Kazakov AE; Rajeev L; Chen A; Luning EG; Dubchak I; Mukhopadhyay A; Novichkov PS
    BMC Genomics; 2015 Nov; 16():919. PubMed ID: 26555820
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CO2 exposure at pressure impacts metabolism and stress responses in the model sulfate-reducing bacterium Desulfovibrio vulgaris strain Hildenborough.
    Wilkins MJ; Hoyt DW; Marshall MJ; Alderson PA; Plymale AE; Markillie LM; Tucker AE; Walter ED; Linggi BE; Dohnalkova AC; Taylor RC
    Front Microbiol; 2014; 5():507. PubMed ID: 25309528
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A diazotrophy-ammoniotrophy dual growth model for the sulfate reducing bacterium
    Darnajoux R; Inomura K; Zhang X
    Comput Struct Biotechnol J; 2023; 21():3136-3148. PubMed ID: 37293241
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogen metabolism in Desulfovibrio desulfuricans strain New Jersey (NCIMB 8313)--comparative study with D. vulgaris and D. gigas species.
    Carepo M; Baptista JF; Pamplona A; Fauque G; Moura JJ; Reis MA
    Anaerobe; 2002 Dec; 8(6):325-32. PubMed ID: 16887677
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic Exchange and Energetic Coupling between Nutritionally Stressed Bacterial Species: Role of Quorum-Sensing Molecules.
    Ranava D; Backes C; Karthikeyan G; Ouari O; Soric A; Guiral M; Cárdenas ML; Giudici-Orticoni MT
    mBio; 2021 Jan; 12(1):. PubMed ID: 33468690
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biofilm formation in Desulfovibrio vulgaris Hildenborough is dependent upon protein filaments.
    Clark ME; Edelmann RE; Duley ML; Wall JD; Fields MW
    Environ Microbiol; 2007 Nov; 9(11):2844-54. PubMed ID: 17922767
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.