These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 38463549)

  • 1. Cavity-agnostic acoustofluidic manipulations enabled by guided flexural waves on a membrane acoustic waveguide actuator.
    Vachon P; Merugu S; Sharma J; Lal A; Ng EJ; Koh Y; Lee JE; Lee C
    Microsyst Nanoeng; 2024; 10():33. PubMed ID: 38463549
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfabricated acoustofluidic membrane acoustic waveguide actuator for highly localized in-droplet dynamic particle manipulation.
    Vachon P; Merugu S; Sharma J; Lal A; Ng EJ; Koh Y; Lee JE; Lee C
    Lab Chip; 2023 Mar; 23(7):1865-1878. PubMed ID: 36852544
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diversity of 2D Acoustofluidic Fields in an Ultrasonic Cavity Generated by Multiple Vibration Sources.
    Tang Q; Zhou S; Huang L; Chen Z
    Micromachines (Basel); 2019 Nov; 10(12):. PubMed ID: 31766721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acoustofluidic waveguides for localized control of acoustic wavefront in microfluidics.
    Bian Y; Guo F; Yang S; Mao Z; Bachman H; Tang SY; Ren L; Zhang B; Gong J; Guo X; Huang TJ
    Microfluid Nanofluidics; 2017 Aug; 21():. PubMed ID: 29358901
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Capillary-based, multifunctional manipulation of particles and fluids
    Pei Z; Tian Z; Yang S; Shen L; Hao N; Naquin TD; Li T; Sun L; Rong W; Huang TJ
    J Phys D Appl Phys; 2024 Aug; 57(30):. PubMed ID: 38800708
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inertia-Acoustophoresis Hybrid Microfluidic Device for Rapid and Efficient Cell Separation.
    Kim U; Oh B; Ahn J; Lee S; Cho Y
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effective cell trapping using PDMS microspheres in an acoustofluidic chip.
    Yin D; Xu G; Wang M; Shen M; Xu T; Zhu X; Shi X
    Colloids Surf B Biointerfaces; 2017 Sep; 157():347-354. PubMed ID: 28622655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A two-chip acoustofluidic particle manipulation platform with a detachable and reusable surface acoustic wave device.
    Qian J; Ren J; Liu Y; Lam RHW; Lee JE
    Analyst; 2020 Nov; 145(23):7752-7758. PubMed ID: 33001065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Concentration of Microparticles Using Flexural Acoustic Wave in Sessile Droplets.
    Peng T; Li L; Zhou M; Jiang F
    Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35162014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent advances in microfluidic actuation and micro-object manipulation via surface acoustic waves.
    Destgeer G; Sung HJ
    Lab Chip; 2015 Jul; 15(13):2722-38. PubMed ID: 26016538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acoustofluidic Diversity Achieved by Multiple Modes of Acoustic Waves Generated on Piezoelectric-Film-Coated Aluminum Sheets.
    Wang Y; Li X; Meng H; Tao R; Qian J; Fu C; Luo J; Xie J; Fu Y
    ACS Appl Mater Interfaces; 2024 Aug; 16(34):45119-45130. PubMed ID: 39143893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Additive manufacturing of three-dimensional (3D) microfluidic-based microelectromechanical systems (MEMS) for acoustofluidic applications.
    Cesewski E; Haring AP; Tong Y; Singh M; Thakur R; Laheri S; Read KA; Powell MD; Oestreich KJ; Johnson BN
    Lab Chip; 2018 Jul; 18(14):2087-2098. PubMed ID: 29897358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A simple acoustofluidic device for on-chip fabrication of PLGA nanoparticles.
    Ozcelik A; Aslan Z
    Biomicrofluidics; 2022 Jan; 16(1):014103. PubMed ID: 35154554
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detachable Acoustofluidic System for Particle Separation via a Traveling Surface Acoustic Wave.
    Ma Z; Collins DJ; Ai Y
    Anal Chem; 2016 May; 88(10):5316-23. PubMed ID: 27086552
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic acoustic sawtooth metasurfaces for patterning and separation using traveling surface acoustic waves.
    Xu M; Lee PVS; Collins DJ
    Lab Chip; 2021 Dec; 22(1):90-99. PubMed ID: 34860222
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuous Particle Aggregation and Separation in Acoustofluidic Microchannels Driven by Standing Lamb Waves.
    Hsu JC; Chang CY
    Micromachines (Basel); 2022 Dec; 13(12):. PubMed ID: 36557473
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Pumpless Acoustofluidic Platform for Size-Selective Concentration and Separation of Microparticles.
    Ahmed H; Destgeer G; Park J; Jung JH; Ahmad R; Park K; Sung HJ
    Anal Chem; 2017 Dec; 89(24):13575-13581. PubMed ID: 29156880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acoustofluidic black holes for multifunctional in-droplet particle manipulation.
    Liu P; Tian Z; Yang K; Naquin TD; Hao N; Huang H; Chen J; Ma Q; Bachman H; Zhang P; Xu X; Hu J; Huang TJ
    Sci Adv; 2022 Apr; 8(13):eabm2592. PubMed ID: 35363512
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-Aligned Acoustofluidic Particle Focusing and Patterning in Microfluidic Channels from Channel-Based Acoustic Waveguides.
    Collins DJ; O'Rorke R; Devendran C; Ma Z; Han J; Neild A; Ai Y
    Phys Rev Lett; 2018 Feb; 120(7):074502. PubMed ID: 29542954
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Separation of 300 and 100 nm Particles in Fabry-Perot Acoustofluidic Resonators.
    Sehgal P; Kirby BJ
    Anal Chem; 2017 Nov; 89(22):12192-12200. PubMed ID: 29039191
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.