These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 38463839)
1. Optimization of tight gas reservoir fracturing parameters via gradient boosting regression modeling. Yang H; Liu X; Chu X; Xie B; Zhu G; Li H; Yang J Heliyon; 2024 Mar; 10(5):e27015. PubMed ID: 38463839 [TBL] [Abstract][Full Text] [Related]
2. Machine learning-based fracturing parameter optimization for horizontal wells in Panke field shale oil. Li W; Zhang T; Liu X; Dong Z; Dong G; Qian S; Yang Z; Zou L; Lin K; Zhang T Sci Rep; 2024 Mar; 14(1):6046. PubMed ID: 38472299 [TBL] [Abstract][Full Text] [Related]
3. Influence Factors of Multifunctional Viscous Drag Reducers and Their Optimization for Unconventional Oil and Gas Reservoirs. Zhang Y; Zhou F; Liu Y ACS Omega; 2021 Nov; 6(47):32101-32108. PubMed ID: 34870031 [TBL] [Abstract][Full Text] [Related]
4. Prediction of Refracturing Effect of Tight Gas Reservoirs Based on Bayesian Inversion Algorithm. Lin H; Zhou F; Tian Y; Wang Y Comput Intell Neurosci; 2022; 2022():7593526. PubMed ID: 35602635 [TBL] [Abstract][Full Text] [Related]
5. Optimization of fracturing technology for unconventional dense oil reservoirs based on rock brittleness index. Wu H; Zhang N; Lou Y; Zhai X; Liu B; Li S Sci Rep; 2024 Jul; 14(1):15214. PubMed ID: 38956214 [TBL] [Abstract][Full Text] [Related]
6. Field experiments of different fracturing designs in tight conglomerate oil reservoirs. Zhang D; Ma S; Zhang J; Zhu Y; Wang B; Zhu J; Fan X; Yang H; Liang T Sci Rep; 2022 Feb; 12(1):3220. PubMed ID: 35217696 [TBL] [Abstract][Full Text] [Related]
7. Investigation and Application of High-Efficiency Network Fracturing Technology for Deep Shale Gas in the Southern Sichuan Basin. Zhao Z; Zheng Y; Zeng B; Song Y ACS Omega; 2022 Apr; 7(16):14276-14282. PubMed ID: 35573210 [TBL] [Abstract][Full Text] [Related]
8. Cause Analysis and Preventive Measures for Sand Production in Gas Wells of Sulige Gas Field. Wen Y; Liu L; Huang Y; Liu H; Sui M ACS Omega; 2023 Aug; 8(33):30590-30597. PubMed ID: 37636915 [TBL] [Abstract][Full Text] [Related]
9. Hydrochemistry, Sources and Management of Fracturing Flowback Fluid in Tight Sandstone Gasfield in Sulige Gasfield (China). Shi H; He X; Zhou C; Wang L; Xiao Y Arch Environ Contam Toxicol; 2023 Feb; 84(2):284-298. PubMed ID: 36737498 [TBL] [Abstract][Full Text] [Related]
10. Hydraulic fracturing: New uncertainty based modeling approach for process design using Monte Carlo simulation technique. Quosay AA; Knez D; Ziaja J PLoS One; 2020; 15(7):e0236726. PubMed ID: 32726370 [TBL] [Abstract][Full Text] [Related]
11. Study of gas production from shale reservoirs with multi-stage hydraulic fracturing horizontal well considering multiple transport mechanisms. Guo C; Wei M; Liu H PLoS One; 2018; 13(1):e0188480. PubMed ID: 29320489 [TBL] [Abstract][Full Text] [Related]
12. Numerical simulation of the environmental impact of hydraulic fracturing of tight/shale gas reservoirs on near-surface groundwater: Background, base cases, shallow reservoirs, short-term gas, and water transport. Reagan MT; Moridis GJ; Keen ND; Johnson JN Water Resour Res; 2015 Apr; 51(4):2543-2573. PubMed ID: 26726274 [TBL] [Abstract][Full Text] [Related]
13. Modeling fate and transport of hydraulic fracturing fluid in the presence of abandoned wells. Taherdangkoo R; Tatomir A; Anighoro T; Sauter M J Contam Hydrol; 2019 Feb; 221():58-68. PubMed ID: 30679092 [TBL] [Abstract][Full Text] [Related]
14. Nanomaterials and Technology Applications for Hydraulic Fracturing of Unconventional Oil and Gas Reservoirs: A State-of-the-Art Review of Recent Advances and Perspectives. Mao Z; Cheng L; Liu D; Li T; Zhao J; Yang Q ACS Omega; 2022 Aug; 7(34):29543-29570. PubMed ID: 36061652 [TBL] [Abstract][Full Text] [Related]
15. Hydraulic Fracturing Design Considerations and Optimal Usage of Water Resources for Middle Eastern Tight Gas Reservoirs. Suboyin A; Rahman MM; Haroun M ACS Omega; 2021 May; 6(20):13433-13446. PubMed ID: 34056491 [TBL] [Abstract][Full Text] [Related]
16. Theoretical Analysis of the Mechanism of Fracture Network Propagation with Stimulated Reservoir Volume (SRV) Fracturing in Tight Oil Reservoirs. Su Y; Ren L; Meng F; Xu C; Wang W PLoS One; 2015; 10(5):e0125319. PubMed ID: 25966285 [TBL] [Abstract][Full Text] [Related]
17. Investigation on the influence factors for the fracturing effect in fractured tight reservoirs using the numerical simulation. Xiong J; Liu J; Lei W; Liu X; Liang L; Ding Y Sci Prog; 2022; 105(1):368504211070396. PubMed ID: 35037795 [TBL] [Abstract][Full Text] [Related]
18. Impacts of Proppant Flowback on Fracture Conductivity in Different Fracturing Fluids and Flowback Conditions. Guo S; Wang B; Li Y; Hao H; Zhang M; Liang T ACS Omega; 2022 Mar; 7(8):6682-6690. PubMed ID: 35252663 [TBL] [Abstract][Full Text] [Related]
19. Hydraulic Fracture Propagation and Analysis in Heterogeneous Middle Eastern Tight Gas Reservoirs: Influence of Natural Fractures and Well Placement. Al Mteiri S; Suboyin A; Rahman MM; Haroun M ACS Omega; 2021 Jan; 6(1):799-815. PubMed ID: 33458531 [TBL] [Abstract][Full Text] [Related]
20. Formation damage simulation of a multi-fractured horizontal well in a tight gas/shale oil formation. Bui D; Nguyen T; Nguyen T; Yoo H J Pet Explor Prod Technol; 2023; 13(1):163-184. PubMed ID: 35873790 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]