These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38463980)

  • 21. Resting state networks in empirical and simulated dynamic functional connectivity.
    Glomb K; Ponce-Alvarez A; Gilson M; Ritter P; Deco G
    Neuroimage; 2017 Oct; 159():388-402. PubMed ID: 28782678
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optimal control of complex networks: Balancing accuracy and energy of the control action.
    Shirin A; Klickstein IS; Sorrentino F
    Chaos; 2017 Apr; 27(4):041103. PubMed ID: 28456155
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mapping migraine to a common brain network.
    Burke MJ; Joutsa J; Cohen AL; Soussand L; Cooke D; Burstein R; Fox MD
    Brain; 2020 Feb; 143(2):541-553. PubMed ID: 31919494
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Selective Activation of Resting-State Networks following Focal Stimulation in a Connectome-Based Network Model of the Human Brain.
    Spiegler A; Hansen EC; Bernard C; McIntosh AR; Jirsa VK
    eNeuro; 2016; 3(5):. PubMed ID: 27752540
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Correspondence between evoked and intrinsic functional brain network configurations.
    Bolt T; Nomi JS; Rubinov M; Uddin LQ
    Hum Brain Mapp; 2017 Apr; 38(4):1992-2007. PubMed ID: 28052450
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Momentary level of slow default mode network activity is associated with distinct propagation and connectivity patterns in the anesthetized mouse cortex.
    Kang M; Lee YB; Gohel B; Yoo K; Lee P; Chung J; Jeong Y
    J Neurophysiol; 2018 Feb; 119(2):441-458. PubMed ID: 29070626
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Network organization of resting-state cerebral hemodynamics and their aliasing contributions measured by functional near-infrared spectroscopy.
    Zhang F; Khan AF; Ding L; Yuan H
    J Neural Eng; 2023 Jan; 20(1):. PubMed ID: 36535032
    [No Abstract]   [Full Text] [Related]  

  • 28. Integration of temporal and spatial properties of dynamic connectivity networks for automatic diagnosis of brain disease.
    Jie B; Liu M; Shen D
    Med Image Anal; 2018 Jul; 47():81-94. PubMed ID: 29702414
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A human brain atlas derived via n-cut parcellation of resting-state and task-based fMRI data.
    James GA; Hazaroglu O; Bush KA
    Magn Reson Imaging; 2016 Feb; 34(2):209-18. PubMed ID: 26523655
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Deep brain stimulation induced normalization of the human functional connectome in Parkinson's disease.
    Horn A; Wenzel G; Irmen F; Huebl J; Li N; Neumann WJ; Krause P; Bohner G; Scheel M; Kühn AA
    Brain; 2019 Oct; 142(10):3129-3143. PubMed ID: 31412106
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural Controllability Predicts Functional Patterns and Brain Stimulation Benefits Associated with Working Memory.
    Beynel L; Deng L; Crowell CA; Dannhauer M; Palmer H; Hilbig S; Peterchev AV; Luber B; Lisanby SH; Cabeza R; Appelbaum LG; Davis SW
    J Neurosci; 2020 Aug; 40(35):6770-6778. PubMed ID: 32690618
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Large-scale dynamic modeling of task-fMRI signals via subspace system identification.
    Becker CO; Bassett DS; Preciado VM
    J Neural Eng; 2018 Dec; 15(6):066016. PubMed ID: 30088476
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dynamic properties of simulated brain network models and empirical resting-state data.
    Kashyap A; Keilholz S
    Netw Neurosci; 2019; 3(2):405-426. PubMed ID: 30793089
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synchronization dependent on spatial structures of a mesoscopic whole-brain network.
    Choi H; Mihalas S
    PLoS Comput Biol; 2019 Apr; 15(4):e1006978. PubMed ID: 31013267
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The structural-functional connectome and the default mode network of the human brain.
    Horn A; Ostwald D; Reisert M; Blankenburg F
    Neuroimage; 2014 Nov; 102 Pt 1():142-51. PubMed ID: 24099851
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tau burden and the functional connectome in Alzheimer's disease and progressive supranuclear palsy.
    Cope TE; Rittman T; Borchert RJ; Jones PS; Vatansever D; Allinson K; Passamonti L; Vazquez Rodriguez P; Bevan-Jones WR; O'Brien JT; Rowe JB
    Brain; 2018 Feb; 141(2):550-567. PubMed ID: 29293892
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Principles of Intrinsic Motor Cortex Connectivity in Primates.
    Card NS; Gharbawie OA
    J Neurosci; 2020 May; 40(22):4348-4362. PubMed ID: 32327531
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fast learning of fiber orientation distribution function for MR tractography using convolutional neural network.
    Lin Z; Gong T; Wang K; Li Z; He H; Tong Q; Yu F; Zhong J
    Med Phys; 2019 Jul; 46(7):3101-3116. PubMed ID: 31009085
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Greater preference consistency during the Willingness-to-Pay task is related to higher resting state connectivity between the ventromedial prefrontal cortex and the ventral striatum.
    Mackey S; Olafsson V; Aupperle RL; Lu K; Fonzo GA; Parnass J; Liu T; Paulus MP
    Brain Imaging Behav; 2016 Sep; 10(3):730-8. PubMed ID: 26271206
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Correspondence between odorant-evoked patterns of receptor neuron input and intrinsic optical signals in the mouse olfactory bulb.
    Wachowiak M; Cohen LB
    J Neurophysiol; 2003 Mar; 89(3):1623-39. PubMed ID: 12612023
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.