BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 38464019)

  • 1. Graph Structured Neural Networks for Perturbation Biology.
    Evans NJ; Mills GB; Wu G; Song X; McWeeney S
    bioRxiv; 2024 Feb; ():. PubMed ID: 38464019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Explainable Multilayer Graph Neural Network for cancer gene prediction.
    Chatzianastasis M; Vazirgiannis M; Zhang Z
    Bioinformatics; 2023 Nov; 39(11):. PubMed ID: 37862225
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Explaining decisions of graph convolutional neural networks: patient-specific molecular subnetworks responsible for metastasis prediction in breast cancer.
    Chereda H; Bleckmann A; Menck K; Perera-Bel J; Stegmaier P; Auer F; Kramer F; Leha A; Beißbarth T
    Genome Med; 2021 Mar; 13(1):42. PubMed ID: 33706810
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TGSA: protein-protein association-based twin graph neural networks for drug response prediction with similarity augmentation.
    Zhu Y; Ouyang Z; Chen W; Feng R; Chen DZ; Cao J; Wu J
    Bioinformatics; 2022 Jan; 38(2):461-468. PubMed ID: 34559177
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unsupervised construction of computational graphs for gene expression data with explicit structural inductive biases.
    Scherer P; Trębacz M; Simidjievski N; Viñas R; Shams Z; Terre HA; Jamnik M; Liò P
    Bioinformatics; 2022 Feb; 38(5):1320-1327. PubMed ID: 34888618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pre-training graph neural networks for link prediction in biomedical networks.
    Long Y; Wu M; Liu Y; Fang Y; Kwoh CK; Chen J; Luo J; Li X
    Bioinformatics; 2022 Apr; 38(8):2254-2262. PubMed ID: 35171981
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transfer learning of condition-specific perturbation in gene interactions improves drug response prediction.
    Bang D; Koo B; Kim S
    Bioinformatics; 2024 Jun; 40(Supplement_1):i130-i139. PubMed ID: 38940127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting human microbe-disease associations via graph attention networks with inductive matrix completion.
    Long Y; Luo J; Zhang Y; Xia Y
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32725163
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting
    Kim T; Chen D; Hornauer P; Emmenegger V; Bartram J; Ronchi S; Hierlemann A; Schröter M; Roqueiro D
    Front Neuroinform; 2022; 16():1032538. PubMed ID: 36713289
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiphysical graph neural network (MP-GNN) for COVID-19 drug design.
    Li XS; Liu X; Lu L; Hua XS; Chi Y; Xia K
    Brief Bioinform; 2022 Jul; 23(4):. PubMed ID: 35696650
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GraphDTA: predicting drug-target binding affinity with graph neural networks.
    Nguyen T; Le H; Quinn TP; Nguyen T; Le TD; Venkatesh S
    Bioinformatics; 2021 May; 37(8):1140-1147. PubMed ID: 33119053
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep Learning Benchmarks on L1000 Gene Expression Data.
    McDermott MBA; Wang J; Zhao WN; Sheridan SD; Szolovits P; Kohane I; Haggarty SJ; Perlis RH
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(6):1846-1857. PubMed ID: 30990190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. XGDAG: explainable gene-disease associations via graph neural networks.
    Mastropietro A; De Carlo G; Anagnostopoulos A
    Bioinformatics; 2023 Aug; 39(8):. PubMed ID: 37531293
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ligand binding affinity prediction with fusion of graph neural networks and 3D structure-based complex graph.
    Dong L; Shi S; Qu X; Luo D; Wang B
    Phys Chem Chem Phys; 2023 Sep; 25(35):24110-24120. PubMed ID: 37655493
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluating graph neural networks under graph sampling scenarios.
    Wei Q; Hu G
    PeerJ Comput Sci; 2022; 8():e901. PubMed ID: 35494843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Bayesian approach to accurate and robust signature detection on LINCS L1000 data.
    Qiu Y; Lu T; Lim H; Xie L
    Bioinformatics; 2020 May; 36(9):2787-2795. PubMed ID: 32003771
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A deep learning method for drug-target affinity prediction based on sequence interaction information mining.
    Jiang M; Shao Y; Zhang Y; Zhou W; Pang S
    PeerJ; 2023; 11():e16625. PubMed ID: 38099302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-scale enzymatic reaction prediction by variational graph autoencoders.
    Wang C; Yuan C; Wang Y; Chen R; Shi Y; Patti GJ; Hou Q
    bioRxiv; 2023 Mar; ():. PubMed ID: 36945484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NSCGCN: A novel deep GCN model to diagnosis COVID-19.
    Tang C; Hu C; Sun J; Wang SH; Zhang YD
    Comput Biol Med; 2022 Nov; 150():106151. PubMed ID: 36244303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Knowledge graph analytics platform with LINCS and IDG for Parkinson's disease target illumination.
    Yang JJ; Gessner CR; Duerksen JL; Biber D; Binder JL; Ozturk M; Foote B; McEntire R; Stirling K; Ding Y; Wild DJ
    BMC Bioinformatics; 2022 Jan; 23(1):37. PubMed ID: 35021991
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.