These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 38464023)

  • 1. The
    Herrera CM; McMahon E; Swaney DL; Sherry J; Pha K; Adams-Boone K; Johnson JR; Krogan NJ; Stevers M; Solomon D; Elwell C; Engel J
    bioRxiv; 2024 Feb; ():. PubMed ID: 38464023
    [No Abstract]   [Full Text] [Related]  

  • 2. The
    Herrera CM; McMahon E; Swaney DL; Sherry J; Pha K; Adams-Boone K; Johnson JR; Krogan NJ; Stevers M; Solomon D; Elwell C; Engel J
    Microbiol Spectr; 2024 Jul; 12(7):e0045324. PubMed ID: 38814079
    [No Abstract]   [Full Text] [Related]  

  • 3. Homologues of the Chlamydia trachomatis and Chlamydia muridarum Inclusion Membrane Protein IncS Are Interchangeable for Early Development but Not for Inclusion Stability in the Late Developmental Cycle.
    Cortina ME; Derré I
    mSphere; 2023 Apr; 8(2):e0000323. PubMed ID: 36853051
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proximity Labeling To Map Host-Pathogen Interactions at the Membrane of a Bacterium-Containing Vacuole in Chlamydia trachomatis-Infected Human Cells.
    Olson MG; Widner RE; Jorgenson LM; Lawrence A; Lagundzin D; Woods NT; Ouellette SP; Rucks EA
    Infect Immun; 2019 Nov; 87(11):. PubMed ID: 31405957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A meta-analysis of affinity purification-mass spectrometry experimental systems used to identify eukaryotic and chlamydial proteins at the Chlamydia trachomatis inclusion membrane.
    Olson MG; Ouellette SP; Rucks EA
    J Proteomics; 2020 Feb; 212():103595. PubMed ID: 31760040
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Eukaryotic SNARE VAMP3 Dynamically Interacts with Multiple Chlamydial Inclusion Membrane Proteins.
    Bui DC; Jorgenson LM; Ouellette SP; Rucks EA
    Infect Immun; 2021 Jan; 89(2):. PubMed ID: 33229367
    [No Abstract]   [Full Text] [Related]  

  • 7. A Co-infection Model System and the Use of Chimeric Proteins to Study
    Han Y; Derré I
    Front Cell Infect Microbiol; 2017; 7():79. PubMed ID: 28352612
    [No Abstract]   [Full Text] [Related]  

  • 8. The Human Centrosomal Protein CCDC146 Binds
    Almeida F; Luís MP; Pereira IS; Pais SV; Mota LJ
    Front Cell Infect Microbiol; 2018; 8():254. PubMed ID: 30094225
    [No Abstract]   [Full Text] [Related]  

  • 9. Inclusion Membrane Growth and Composition Are Altered by Overexpression of Specific Inclusion Membrane Proteins in Chlamydia trachomatis L2.
    Olson-Wood MG; Jorgenson LM; Ouellette SP; Rucks EA
    Infect Immun; 2021 Jun; 89(7):e0009421. PubMed ID: 33875478
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression and localization of predicted inclusion membrane proteins in Chlamydia trachomatis.
    Weber MM; Bauler LD; Lam J; Hackstadt T
    Infect Immun; 2015 Dec; 83(12):4710-8. PubMed ID: 26416906
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The
    Bishop RC; Derré I
    Infect Immun; 2022 Jun; 90(6):e0019022. PubMed ID: 35587198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chlamydia trachomatis Is Resistant to Inclusion Ubiquitination and Associated Host Defense in Gamma Interferon-Primed Human Epithelial Cells.
    Haldar AK; Piro AS; Finethy R; Espenschied ST; Brown HE; Giebel AM; Frickel EM; Nelson DE; Coers J
    mBio; 2016 Dec; 7(6):. PubMed ID: 27965446
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and Metal Binding Properties of
    Luo Z; Neville SL; Campbell R; Morey JR; Menon S; Thomas M; Eijkelkamp BA; Ween MP; Huston WM; Kobe B; McDevitt CA
    J Bacteriol; 2019 Dec; 202(1):. PubMed ID: 31611288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Chlamydia trachomatis IncM Protein Interferes with Host Cell Cytokinesis, Centrosome Positioning, and Golgi Distribution and Contributes to the Stability of the Pathogen-Containing Vacuole.
    Luís MP; Pereira IS; Bugalhão JN; Simões CN; Mota C; Romão MJ; Mota LJ
    Infect Immun; 2023 Apr; 91(4):e0040522. PubMed ID: 36877064
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chlamydia trachomatis Subverts Alpha-Actinins To Stabilize Its Inclusion.
    Haines A; Wesolowski J; Paumet F
    Microbiol Spectr; 2023 Feb; 11(1):e0261422. PubMed ID: 36651786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TRAF7 potentiates MEKK3-induced AP1 and CHOP activation and induces apoptosis.
    Xu LG; Li LY; Shu HB
    J Biol Chem; 2004 Apr; 279(17):17278-82. PubMed ID: 15001576
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of interactions between inclusion membrane proteins from Chlamydia trachomatis.
    Gauliard E; Ouellette SP; Rueden KJ; Ladant D
    Front Cell Infect Microbiol; 2015; 5():13. PubMed ID: 25717440
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Global Mapping of the Inc-Human Interactome Reveals that Retromer Restricts Chlamydia Infection.
    Mirrashidi KM; Elwell CA; Verschueren E; Johnson JR; Frando A; Von Dollen J; Rosenberg O; Gulbahce N; Jang G; Johnson T; Jäger S; Gopalakrishnan AM; Sherry J; Dunn JD; Olive A; Penn B; Shales M; Cox JS; Starnbach MN; Derre I; Valdivia R; Krogan NJ; Engel J
    Cell Host Microbe; 2015 Jul; 18(1):109-21. PubMed ID: 26118995
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The
    Meier K; Jachmann LH; Türköz G; Babu Sait MR; Pérez L; Kepp O; Valdivia RH; Kroemer G; Sixt BS
    mBio; 2023 Aug; 14(4):e0319022. PubMed ID: 37530528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Global mapping of the
    Steiert B; Andersen SE; McCaslin PN; Elwell CA; Faris R; Tijerina X; Smith P; Eldridge Q; Imai BS; Arrington JV; Yau PM; Mirrashidi KM; Johnson JR; Verschueren E; Von Dollen J; Jang GM; Krogan NJ; Engel JN; Weber MM
    bioRxiv; 2024 Apr; ():. PubMed ID: 38712050
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.