These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 38464036)

  • 61. Engineering Escherichia coli to increase plasmid DNA production in high cell-density cultivations in batch mode.
    Borja GM; Meza Mora E; Barrón B; Gosset G; Ramírez OT; Lara AR
    Microb Cell Fact; 2012 Sep; 11():132. PubMed ID: 22992433
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Differences in secondary structure between packaged and unpackaged single-stranded DNA of bacteriophage phi X174 determined by Raman spectroscopy: a model for phi X174 DNA packaging.
    Benevides JM; Stow PL; Ilag LL; Incardona NL; Thomas GJ
    Biochemistry; 1991 May; 30(20):4855-63. PubMed ID: 1827990
    [TBL] [Abstract][Full Text] [Related]  

  • 63. "Direct cloning in Lactobacillus plantarum: electroporation with non-methylated plasmid DNA enhances transformation efficiency and makes shuttle vectors obsolete".
    Spath K; Heinl S; Grabherr R
    Microb Cell Fact; 2012 Oct; 11():141. PubMed ID: 23098256
    [TBL] [Abstract][Full Text] [Related]  

  • 64. ORBIT: a New Paradigm for Genetic Engineering of Mycobacterial Chromosomes.
    Murphy KC; Nelson SJ; Nambi S; Papavinasasundaram K; Baer CE; Sassetti CM
    mBio; 2018 Dec; 9(6):. PubMed ID: 30538179
    [TBL] [Abstract][Full Text] [Related]  

  • 65. RecQ helicase and RecJ nuclease provide complementary functions to resect DNA for homologous recombination.
    Morimatsu K; Kowalczykowski SC
    Proc Natl Acad Sci U S A; 2014 Dec; 111(48):E5133-42. PubMed ID: 25411316
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Efficient and Scalable Precision Genome Editing in
    Penewit K; Holmes EA; McLean K; Ren M; Waalkes A; Salipante SJ
    mBio; 2018 Feb; 9(1):. PubMed ID: 29463653
    [No Abstract]   [Full Text] [Related]  

  • 67. Preparation of ssDNA from phagemid vectors.
    Trower MK
    Methods Mol Biol; 1996; 58():363-6. PubMed ID: 8713885
    [No Abstract]   [Full Text] [Related]  

  • 68. Endonuclease A degrades chromosomal and plasmid DNA of Escherichia coli present in most preparations of single stranded DNA from phagemids.
    Lin JJ
    Proc Natl Sci Counc Repub China B; 1992 Jan; 16(1):1-5. PubMed ID: 1631242
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Coupling ssDNA recombineering with CRISPR-Cas9 for Escherichia coli DnaG mutations.
    Li J; Sun J; Gao X; Wu Z; Shang G
    Appl Microbiol Biotechnol; 2019 Apr; 103(8):3559-3570. PubMed ID: 30879090
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Biotechnological mass production of DNA origami.
    Praetorius F; Kick B; Behler KL; Honemann MN; Weuster-Botz D; Dietz H
    Nature; 2017 Dec; 552(7683):84-87. PubMed ID: 29219963
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Enhanced integration of large DNA into E. coli chromosome by CRISPR/Cas9.
    Chung ME; Yeh IH; Sung LY; Wu MY; Chao YP; Ng IS; Hu YC
    Biotechnol Bioeng; 2017 Jan; 114(1):172-183. PubMed ID: 27454445
    [TBL] [Abstract][Full Text] [Related]  

  • 72. A CRISPR/Cas9-based single-stranded DNA recombineering system for genome editing of
    Liang Y; Wei Y; Jiao S; Yu H
    Synth Syst Biotechnol; 2021 Sep; 6(3):200-208. PubMed ID: 34430726
    [TBL] [Abstract][Full Text] [Related]  

  • 73. The hepatitis B virus transactivator protein, HBx, interacts with single-stranded DNA (ssDNA). Biochemical characterizations of the HBx-ssDNA interactions.
    Qadri I; Ferrari ME; Siddiqui A
    J Biol Chem; 1996 Jun; 271(26):15443-50. PubMed ID: 8663128
    [TBL] [Abstract][Full Text] [Related]  

  • 74. TESOGENASE, An Engineered Nuclease Editor for Enhanced Targeted Genome Integration.
    Nam H; Xie K; Majumdar I; Yang S; Starzyk J; Lee D; Shan R; Li J; Wu H
    bioRxiv; 2023 Aug; ():. PubMed ID: 37693500
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Structural Mechanisms of Cooperative DNA Binding by Bacterial Single-Stranded DNA-Binding Proteins.
    Dubiel K; Myers AR; Kozlov AG; Yang O; Zhang J; Ha T; Lohman TM; Keck JL
    J Mol Biol; 2019 Jan; 431(2):178-195. PubMed ID: 30472092
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Multiprotein E. coli SSB-ssDNA complex shows both stable binding and rapid dissociation due to interprotein interactions.
    Naufer MN; Morse M; Möller GB; McIsaac J; Rouzina I; Beuning PJ; Williams MC
    Nucleic Acids Res; 2021 Feb; 49(3):1532-1549. PubMed ID: 33434279
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Selective Nascent Polymer Catch-and-Release Enables Scalable Isolation of Multi-Kilobase Single-Stranded DNA.
    Krieg E; Shih WM
    Angew Chem Int Ed Engl; 2018 Jan; 57(3):714-718. PubMed ID: 29210156
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The Escherichia coli PriA helicase specifically recognizes gapped DNA substrates: effect of the two nucleotide-binding sites of the enzyme on the recognition process.
    Szymanski MR; Jezewska MJ; Bujalowski W
    J Biol Chem; 2010 Mar; 285(13):9683-9696. PubMed ID: 20089865
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Chromosome Engineering To Generate Plasmid-Free Phenylalanine- and Tyrosine-Overproducing
    Koma D; Kishida T; Yoshida E; Ohashi H; Yamanaka H; Moriyoshi K; Nagamori E; Ohmoto T
    Appl Environ Microbiol; 2020 Jul; 86(14):. PubMed ID: 32414798
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Chemostat studies of bacteriophage M13 infected Escherichia coli JM109 for continuous ssDNA production.
    Kick B; Behler KL; Severin TS; Weuster-Botz D
    J Biotechnol; 2017 Sep; 258():92-100. PubMed ID: 28645580
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.