These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 38464134)

  • 1. Neuromodulatory effects on synchrony and network reorganization in networks of coupled Kuramoto oscillators.
    Aktay S; Sander LM; Zochowski M
    bioRxiv; 2024 Feb; ():. PubMed ID: 38464134
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuromodulatory effects on synchrony and network reorganization in networks of coupled Kuramoto oscillators.
    Aktay S; Sander LM; Zochowski M
    Phys Rev E; 2024 Oct; 110(4-1):044401. PubMed ID: 39562932
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of structural correlations and synchronization from adaptive rewiring in networks of Kuramoto oscillators.
    Papadopoulos L; Kim JZ; Kurths J; Bassett DS
    Chaos; 2017 Jul; 27(7):073115. PubMed ID: 28764402
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Path-dependent dynamics induced by rewiring networks of inertial oscillators.
    Qian W; Papadopoulos L; Lu Z; Kroma-Wiley KA; Pasqualetti F; Bassett DS
    Phys Rev E; 2022 Feb; 105(2-1):024304. PubMed ID: 35291167
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chaos in generically coupled phase oscillator networks with nonpairwise interactions.
    Bick C; Ashwin P; Rodrigues A
    Chaos; 2016 Sep; 26(9):094814. PubMed ID: 27781441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics of phase oscillator networks with synaptic weight and structural plasticity.
    Chauhan K; Khaledi-Nasab A; Neiman AB; Tass PA
    Sci Rep; 2022 Sep; 12(1):15003. PubMed ID: 36056151
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effective Subnetwork Topology for Synchronizing Interconnected Networks of Coupled Phase Oscillators.
    Yamamoto H; Kubota S; Shimizu FA; Hirano-Iwata A; Niwano M
    Front Comput Neurosci; 2018; 12():17. PubMed ID: 29643771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasticity and learning in a network of coupled phase oscillators.
    Seliger P; Young SC; Tsimring LS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Apr; 65(4 Pt 1):041906. PubMed ID: 12005872
    [TBL] [Abstract][Full Text] [Related]  

  • 9. When three is a crowd: Chaos from clusters of Kuramoto oscillators with inertia.
    Brister BN; Belykh VN; Belykh IV
    Phys Rev E; 2020 Jun; 101(6-1):062206. PubMed ID: 32688588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Existence and stability criteria for global synchrony and for synchrony in two alternating clusters of pulse-coupled oscillators updated to include conduction delays.
    Vedururu Srinivas A; Canavier CC
    Math Biosci; 2024 Dec; 378():109335. PubMed ID: 39491588
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Local synchronization in complex networks of coupled oscillators.
    Stout J; Whiteway M; Ott E; Girvan M; Antonsen TM
    Chaos; 2011 Jun; 21(2):025109. PubMed ID: 21721787
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bistability of patterns of synchrony in Kuramoto oscillators with inertia.
    Belykh IV; Brister BN; Belykh VN
    Chaos; 2016 Sep; 26(9):094822. PubMed ID: 27781476
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Repulsively coupled Kuramoto-Sakaguchi phase oscillators ensemble subject to common noise.
    Gong CC; Zheng C; Toenjes R; Pikovsky A
    Chaos; 2019 Mar; 29(3):033127. PubMed ID: 30927833
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dense networks that do not synchronize and sparse ones that do.
    Townsend A; Stillman M; Strogatz SH
    Chaos; 2020 Aug; 30(8):083142. PubMed ID: 32872810
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Existence and Stability Criteria for Global Synchrony and for Synchrony in two Alternating Clusters of Pulse-Coupled Oscillators Updated to Include Conduction Delays.
    Vedururu Srinivas A; Canavier CC
    bioRxiv; 2024 Aug; ():. PubMed ID: 38260324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kuramoto model of coupled oscillators with positive and negative coupling parameters: an example of conformist and contrarian oscillators.
    Hong H; Strogatz SH
    Phys Rev Lett; 2011 Feb; 106(5):054102. PubMed ID: 21405399
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synchronization through frequency shuffling.
    Aravind M; Pachaulee V; Sarkar M; Tiwari I; Gupta S; Parmananda P
    Phys Rev E; 2024 May; 109(5):L052302. PubMed ID: 38907503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SYNCHRONIZATION OF HETEROGENEOUS OSCILLATORS UNDER NETWORK MODIFICATIONS: PERTURBATION AND OPTIMIZATION OF THE SYNCHRONY ALIGNMENT FUNCTION.
    Taylor D; Skardal PS; Sun J
    SIAM J Appl Math; 2016; 76(5):1984-2008. PubMed ID: 27872501
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptive oscillator networks with conserved overall coupling: sequential firing and near-synchronized states.
    Picallo CB; Riecke H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 2):036206. PubMed ID: 21517574
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics and bifurcations of two coupled neural oscillators with different connection types.
    Borisyuk GN; Borisyuk RM; Khibnik AI; Roose D
    Bull Math Biol; 1995 Nov; 57(6):809-40. PubMed ID: 8528157
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.