These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 38464746)

  • 1. Unsupervised AI reveals insect species-specific genome signatures.
    Sawada Y; Minei R; Tabata H; Ikemura T; Wada K; Wada Y; Nagata H; Iwasaki Y
    PeerJ; 2024; 12():e17025. PubMed ID: 38464746
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative genomic analysis of the human genome and six bat genomes using unsupervised machine learning: Mb-level CpG and TFBS islands.
    Iwasaki Y; Ikemura T; Wada K; Wada Y; Abe T
    BMC Genomics; 2022 Jul; 23(1):497. PubMed ID: 35804296
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mb-level CpG and TFBS islands visualized by AI and their roles in the nuclear organization of the human genome.
    Wada K; Wada Y; Ikemura T
    Genes Genet Syst; 2020 Apr; 95(1):29-41. PubMed ID: 32161227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. AI for the collective analysis of a massive number of genome sequences: various examples from the small genome of pandemic SARS-CoV-2 to the human genome.
    Ikemura T; Iwasaki Y; Wada K; Wada Y; Abe T
    Genes Genet Syst; 2021 Dec; 96(4):165-176. PubMed ID: 34565757
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel bioinformatics method for efficient knowledge discovery by BLSOM from big genomic sequence data.
    Bai Y; Iwasaki Y; Kanaya S; Zhao Y; Ikemura T
    Biomed Res Int; 2014; 2014():765648. PubMed ID: 24804244
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visualization of genome signatures of eukaryote genomes by batch-learning self-organizing map with a special emphasis on Drosophila genomes.
    Abe T; Hamano Y; Ikemura T
    Biomed Res Int; 2014; 2014():985706. PubMed ID: 24741568
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unsupervised explainable AI for molecular evolutionary study of forty thousand SARS-CoV-2 genomes.
    Iwasaki Y; Abe T; Wada K; Wada Y; Ikemura T
    BMC Microbiol; 2022 Mar; 22(1):73. PubMed ID: 35272618
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Notable clustering of transcription-factor-binding motifs in human pericentric regions and its biological significance.
    Iwasaki Y; Wada K; Wada Y; Abe T; Ikemura T
    Chromosome Res; 2013 Aug; 21(5):461-74. PubMed ID: 23896648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Informatics for unveiling hidden genome signatures.
    Abe T; Kanaya S; Kinouchi M; Ichiba Y; Kozuki T; Ikemura T
    Genome Res; 2003 Apr; 13(4):693-702. PubMed ID: 12671005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CG-containing oligonucleotides and transcription factor-binding motifs are enriched in human pericentric regions.
    Wada Y; Iwasaki Y; Abe T; Wada K; Tooyama I; Ikemura T
    Genes Genet Syst; 2015; 90(1):43-53. PubMed ID: 26119665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-Organizing Map (SOM) unveils and visualizes hidden sequence characteristics of a wide range of eukaryote genomes.
    Abe T; Sugawara H; Kanaya S; Kinouchi M; Ikemura T
    Gene; 2006 Jan; 365():27-34. PubMed ID: 16364569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An artificial intelligence approach fit for tRNA gene studies in the era of big sequence data.
    Iwasaki Y; Abe T; Wada K; Wada Y; Ikemura T
    Genes Genet Syst; 2017 Sep; 92(1):43-54. PubMed ID: 28344190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative genomics of
    Katsura Y; Ikemura T; Kajitani R; Toyoda A; Itoh T; Ogata M; Miura I; Wada K; Wada Y; Satta Y
    Life Sci Alliance; 2021 May; 4(5):. PubMed ID: 33712508
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel bioinformatic strategy for unveiling hidden genome signatures of eukaryotes: self-organizing map of oligonucleotide frequency.
    Abe T; Kanaya S; Kinouchi M; Ichiba Y; Kozuki T; Ikemura T
    Genome Inform; 2002; 13():12-20. PubMed ID: 14571370
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolutionary changes in vertebrate genome signatures with special focus on coelacanth.
    Iwasaki Y; Abe T; Okada N; Wada K; Wada Y; Ikemura T
    DNA Res; 2014 Oct; 21(5):459-67. PubMed ID: 24800745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Novel Bioinformatics Strategy to Analyze Microbial Big Sequence Data for Efficient Knowledge Discovery: Batch-Learning Self-Organizing Map (BLSOM).
    Iwasaki Y; Abe T; Wada K; Wada Y; Ikemura T
    Microorganisms; 2013 Nov; 1(1):137-157. PubMed ID: 27694768
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complete mitochondrial genome of the free-living earwig, Challia fletcheri (Dermaptera: Pygidicranidae) and phylogeny of Polyneoptera.
    Wan X; Kim MI; Kim MJ; Kim I
    PLoS One; 2012; 7(8):e42056. PubMed ID: 22879905
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ChromaSig: a probabilistic approach to finding common chromatin signatures in the human genome.
    Hon G; Ren B; Wang W
    PLoS Comput Biol; 2008 Oct; 4(10):e1000201. PubMed ID: 18927605
    [TBL] [Abstract][Full Text] [Related]  

  • 19. AI-based search for convergently expanding, advantageous mutations in SARS-CoV-2 by focusing on oligonucleotide frequencies.
    Ikemura T; Iwasaki Y; Wada K; Wada Y; Abe T
    PLoS One; 2022; 17(8):e0273860. PubMed ID: 36044525
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phylogenetic distribution of TTAGG telomeric repeats in insects.
    Frydrychová R; Grossmann P; Trubac P; Vítková M; Marec F
    Genome; 2004 Feb; 47(1):163-78. PubMed ID: 15060613
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.