These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 38465257)

  • 1. Roughness Evolution Induced by Third-Body Wear.
    Garcia-Suarez J; Brink T; Molinari JF
    Tribol Lett; 2024; 72(2):37. PubMed ID: 38465257
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Emergence of self-affine surfaces during adhesive wear.
    Milanese E; Brink T; Aghababaei R; Molinari JF
    Nat Commun; 2019 Mar; 10(1):1116. PubMed ID: 30850605
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of scratch resistance of cobalt chromium alloy bearing surface, articulating against ultra-high molecular weight polyethylene, due to third-body wear particles.
    Mirghany M; Jin ZM
    Proc Inst Mech Eng H; 2004; 218(1):41-50. PubMed ID: 14982345
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Wear and Roughness of Bearing Surface in Retrieved Polyethylene Bicon-Plus Cups].
    Ranuša M; Gallo J; Hobza M; Vrbka M; Nečas D; Hartl M
    Acta Chir Orthop Traumatol Cech; 2017; 84(3):159-167. PubMed ID: 28809634
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Abrasive wear of ceramic, metal, and UHMWPE bearing surfaces from third-body bone, PMMA bone cement, and titanium debris.
    Davidson JA; Poggie RA; Mishra AK
    Biomed Mater Eng; 1994; 4(3):213-29. PubMed ID: 7950870
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Third-body abrasive wear challenge of 32 mm conventional and 44 mm highly crosslinked polyethylene liners in a hip simulator model.
    Sorimachi T; Clarke IC; Williams PA; Gustafson A; Yamamoto K
    Proc Inst Mech Eng H; 2009 Jul; 223(5):607-23. PubMed ID: 19623913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Investigation of the Influence of Initial Roughness on the Friction and Wear Behavior of Ground Surfaces.
    Liang G; Schmauder S; Lyu M; Schneider Y; Zhang C; Han Y
    Materials (Basel); 2018 Feb; 11(2):. PubMed ID: 29401703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-affine roughness influence on the friction coefficient for rubbers onto solid surfaces.
    Palasantzas G
    J Chem Phys; 2004 Feb; 120(6):2889-92. PubMed ID: 15268436
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic evolution of interface roughness during friction and wear processes.
    Kubiak KJ; Bigerelle M; Mathia TG; Dubois A; Dubar L
    Scanning; 2014; 36(1):30-8. PubMed ID: 23440686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A story of two transitions: From adhesive to abrasive wear and from ductile to brittle regime.
    Wattel SZ; Molinari JF
    J Chem Phys; 2024 Jan; 160(1):. PubMed ID: 38180258
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the debris-level origins of adhesive wear.
    Aghababaei R; Warner DH; Molinari JF
    Proc Natl Acad Sci U S A; 2017 Jul; 114(30):7935-7940. PubMed ID: 28696291
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generalized law of friction between elastomers and differently shaped rough bodies.
    Popov VL; Voll L; Li Q; Chai YS; Popov M
    Sci Rep; 2014 Jan; 4():3750. PubMed ID: 24435002
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the Adhesive Interaction Between Metals in Atomistic Simulations of Friction and Wear.
    Aramfard M; Avanzi L; Nicola L
    Tribol Lett; 2024; 72(3):80. PubMed ID: 39220376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study on torsional fretting wear behavior of a ball-on-socket contact configuration simulating an artificial cervical disk.
    Wang S; Wang F; Liao Z; Wang Q; Liu Y; Liu W
    Mater Sci Eng C Mater Biol Appl; 2015 Oct; 55():22-33. PubMed ID: 26117735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wear behavior of pressable lithium disilicate glass ceramic.
    Peng Z; Izzat Abdul Rahman M; Zhang Y; Yin L
    J Biomed Mater Res B Appl Biomater; 2016 Jul; 104(5):968-78. PubMed ID: 25980530
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tactile perception of randomly rough surfaces.
    Sahli R; Prot A; Wang A; Müser MH; Piovarči M; Didyk P; Bennewitz R
    Sci Rep; 2020 Sep; 10(1):15800. PubMed ID: 32978470
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contact between representative rough surfaces.
    Yastrebov VA; Anciaux G; Molinari JF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 2):035601. PubMed ID: 23030973
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Friction between a viscoelastic body and a rigid surface with random self-affine roughness.
    Li Q; Popov M; Dimaki A; Filippov AE; Kürschner S; Popov VL
    Phys Rev Lett; 2013 Jul; 111(3):034301. PubMed ID: 23909327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Statistics of the separation between sliding rigid rough surfaces: Simulations and extreme value theory approach.
    Ponthus N; Scheibert J; Thøgersen K; Malthe-Sørenssen A; Perret-Liaudet J
    Phys Rev E; 2019 Feb; 99(2-1):023004. PubMed ID: 30934331
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Roughness of stylolites: implications of 3D high resolution topography measurements.
    Schmittbuhl J; Renard F; Gratier JP; Toussaint R
    Phys Rev Lett; 2004 Dec; 93(23):238501. PubMed ID: 15601212
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.