These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 38465579)
1. Cleaved SPP1-rich extracellular vesicles from osteoclasts promote bone regeneration via TGFβ1/SMAD3 signaling. Faqeer A; Wang M; Alam G; Padhiar AA; Zheng D; Luo Z; Zhao IS; Zhou G; van den Beucken JJJP; Wang H; Zhang Y Biomaterials; 2023 Dec; 303():122367. PubMed ID: 38465579 [TBL] [Abstract][Full Text] [Related]
3. Uptake of osteoblast-derived extracellular vesicles promotes the differentiation of osteoclasts in the zebrafish scale. Kobayashi-Sun J; Yamamori S; Kondo M; Kuroda J; Ikegame M; Suzuki N; Kitamura KI; Hattori A; Yamaguchi M; Kobayashi I Commun Biol; 2020 Apr; 3(1):190. PubMed ID: 32327701 [TBL] [Abstract][Full Text] [Related]
4. Biomimetic composite hydrogel promotes new bone formation in rat bone defects through regulation of miR-19b-3p/WWP1 axis by loaded extracellular vesicles. Guo R; Wu C; Liu F; Dong T; Zhang T J Nanobiotechnology; 2023 Nov; 21(1):459. PubMed ID: 38037135 [TBL] [Abstract][Full Text] [Related]
5. Human Umbilical Cord Mesenchymal Stem Cells-Derived Extracellular Vesicles for Rat Jawbone Regeneration in Periapical Periodontitis. Gao J; Zhu D; Fan Y; Liu H; Shen Z ACS Biomater Sci Eng; 2024 Sep; 10(9):5784-5795. PubMed ID: 39164977 [TBL] [Abstract][Full Text] [Related]
6. Osteogenic human MSC-derived extracellular vesicles regulate MSC activity and osteogenic differentiation and promote bone regeneration in a rat calvarial defect model. Al-Sharabi N; Mohamed-Ahmed S; Shanbhag S; Kampleitner C; Elnour R; Yamada S; Rana N; Birkeland E; Tangl S; Gruber R; Mustafa K Stem Cell Res Ther; 2024 Feb; 15(1):33. PubMed ID: 38321490 [TBL] [Abstract][Full Text] [Related]
7. Bovine milk extracellular vesicles induce the proliferation and differentiation of osteoblasts and promote osteogenesis in rats. Go G; Jeon J; Lee G; Lee JH; Lee SH J Food Biochem; 2021 Apr; 45(4):e13705. PubMed ID: 33748986 [TBL] [Abstract][Full Text] [Related]
8. Periodontal ligament-associated protein-1 knockout mice regulate the differentiation of osteoclasts and osteoblasts through TGF-β1/Smad signaling pathway. Liu S; Yan X; Guo J; An H; Li X; Yang L; Yu X; Li S J Cell Physiol; 2024 Mar; 239(3):e31062. PubMed ID: 37357387 [TBL] [Abstract][Full Text] [Related]
9. Young osteocyte-derived extracellular vesicles facilitate osteogenesis by transferring tropomyosin-1. Wang ZX; Lin X; Cao J; Liu YW; Luo ZW; Rao SS; Wang Q; Wang YY; Chen CY; Zhu GQ; Li FX; Tan YJ; Hu Y; Yin H; Li YY; He ZH; Liu ZZ; Yuan LQ; Zhou Y; Wang ZG; Xie H J Nanobiotechnology; 2024 Apr; 22(1):208. PubMed ID: 38664789 [TBL] [Abstract][Full Text] [Related]
10. Human umbilical cord mesenchymal stromal cells-derived extracellular vesicles exert potent bone protective effects by CLEC11A-mediated regulation of bone metabolism. Hu Y; Zhang Y; Ni CY; Chen CY; Rao SS; Yin H; Huang J; Tan YJ; Wang ZX; Cao J; Liu ZZ; Xie PL; Wu B; Luo J; Xie H Theranostics; 2020; 10(5):2293-2308. PubMed ID: 32089743 [TBL] [Abstract][Full Text] [Related]
11. Bone marrow stromal/stem cell-derived extracellular vesicles regulate osteoblast activity and differentiation in vitro and promote bone regeneration in vivo. Qin Y; Wang L; Gao Z; Chen G; Zhang C Sci Rep; 2016 Feb; 6():21961. PubMed ID: 26911789 [TBL] [Abstract][Full Text] [Related]
12. Overloaded Orthopedic Force Induces Condylar Subchondral Bone Absorption by Stimulating Rat Mesenchymal Stem Cells Differentiating into Osteoclasts via mTOR-Regulated Tian Y; Chen J; Yan X; Ren D; Liu M; Zhang Q; Zhang Q; Yuan X Stem Cells Dev; 2021 Jan; 30(1):29-38. PubMed ID: 33176606 [TBL] [Abstract][Full Text] [Related]
13. Effect of primary osteoblast-derived extracellular vesicles on osteoclast differentiation. Zhang L; Tan J Zhejiang Da Xue Xue Bao Yi Xue Ban; 2024 Aug; 53(4):434-442. PubMed ID: 39034117 [TBL] [Abstract][Full Text] [Related]
14. The tissue origin effect of extracellular vesicles on cartilage and bone regeneration. Li Q; Yu H; Sun M; Yang P; Hu X; Ao Y; Cheng J Acta Biomater; 2021 Apr; 125():253-266. PubMed ID: 33657452 [TBL] [Abstract][Full Text] [Related]
15. Mature osteoclast-derived apoptotic bodies promote osteogenic differentiation via RANKL-mediated reverse signaling. Ma Q; Liang M; Wu Y; Ding N; Duan L; Yu T; Bai Y; Kang F; Dong S; Xu J; Dou C J Biol Chem; 2019 Jul; 294(29):11240-11247. PubMed ID: 31167789 [TBL] [Abstract][Full Text] [Related]
16. Muscle-derived extracellular vesicles improve disuse-induced osteoporosis by rebalancing bone formation and bone resorption. Huang H; Ma S; Xing X; Su X; Xu X; Tang Q; Gao X; Yang J; Li M; Liang C; Wu Y; Liao L; Tian W Acta Biomater; 2023 Feb; 157():609-624. PubMed ID: 36526242 [TBL] [Abstract][Full Text] [Related]
17. Extracellular Vesicles Derived from Neutrophils Accelerate Bone Regeneration by Promoting Osteogenic Differentiation of BMSCs. Wang L; Zhang G; Gao Y; Dai T; Yu J; Liu Y; Bao H; She J; Hou Y; Kong L; Cai B ACS Biomater Sci Eng; 2024 Jun; 10(6):3868-3882. PubMed ID: 38703236 [TBL] [Abstract][Full Text] [Related]
18. Co-Culture with Human Osteoblasts and Exposure to Extremely Low Frequency Pulsed Electromagnetic Fields Improve Osteogenic Differentiation of Human Adipose-Derived Mesenchymal Stem Cells. Ehnert S; van Griensven M; Unger M; Scheffler H; Falldorf K; Fentz AK; Seeliger C; Schröter S; Nussler AK; Balmayor ER Int J Mol Sci; 2018 Mar; 19(4):. PubMed ID: 29584629 [TBL] [Abstract][Full Text] [Related]
19. A novel role in skeletal segment regeneration of extracellular vesicles released from periodontal-ligament stem cells. Diomede F; D'Aurora M; Gugliandolo A; Merciaro I; Ettorre V; Bramanti A; Piattelli A; Gatta V; Mazzon E; Fontana A; Trubiani O Int J Nanomedicine; 2018; 13():3805-3825. PubMed ID: 29988728 [TBL] [Abstract][Full Text] [Related]
20. Bone-Targeted Extracellular Vesicles from Mesenchymal Stem Cells for Osteoporosis Therapy. Wang Y; Yao J; Cai L; Liu T; Wang X; Zhang Y; Zhou Z; Li T; Liu M; Lai R; Liu X Int J Nanomedicine; 2020; 15():7967-7977. PubMed ID: 33116512 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]