BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 38465622)

  • 1. Dynamic evolution of bone marrow adipocyte in B cell acute lymphoblastic leukemia: insights from diagnosis to post-chemotherapy.
    Jia X; Liao N; Yao Y; Guo X; Chen K; Shi P
    Cancer Biol Ther; 2024 Dec; 25(1):2323765. PubMed ID: 38465622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Connective tissue growth factor regulates adipocyte differentiation of mesenchymal stromal cells and facilitates leukemia bone marrow engraftment.
    Battula VL; Chen Y; Cabreira Mda G; Ruvolo V; Wang Z; Ma W; Konoplev S; Shpall E; Lyons K; Strunk D; Bueso-Ramos C; Davis RE; Konopleva M; Andreeff M
    Blood; 2013 Jul; 122(3):357-66. PubMed ID: 23741006
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Abnormal adipogenic signaling in the bone marrow mesenchymal stem cells contributes to supportive microenvironment for leukemia development.
    Sabbah R; Saadi S; Shahar-Gabay T; Gerassy S; Yehudai-Resheff S; Zuckerman T
    Cell Commun Signal; 2023 Oct; 21(1):277. PubMed ID: 37817179
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemotherapy-induced niche perturbs hematopoietic reconstitution in B-cell acute lymphoblastic leukemia.
    Tang C; Li MH; Chen YL; Sun HY; Liu SL; Zheng WW; Zhang MY; Li H; Fu W; Zhang WJ; Liang AB; Tang ZH; Hong DL; Zhou BS; Duan CW
    J Exp Clin Cancer Res; 2018 Aug; 37(1):204. PubMed ID: 30157922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Patient-Derived Bone Marrow Spheroids Reveal Leukemia-Initiating Cells Supported by Mesenchymal Hypoxic Niches in Pediatric B-ALL.
    Balandrán JC; Dávila-Velderrain J; Sandoval-Cabrera A; Zamora-Herrera G; Terán-Cerqueda V; García-Stivalet LA; Limón-Flores JA; Armenta-Castro E; Rodríguez-Martínez A; Leon-Chavez BA; Vallejo-Ruiz V; Hassane DC; Pérez-Tapia SM; Ortiz-Navarrete V; Guzman ML; Pelayo R
    Front Immunol; 2021; 12():746492. PubMed ID: 34737747
    [TBL] [Abstract][Full Text] [Related]  

  • 6. BM-MSCs display altered gene expression profiles in B-cell acute lymphoblastic leukemia niches and exert pro-proliferative effects via overexpression of IFI6.
    Pan C; Hu T; Liu P; Ma D; Cao S; Shang Q; Zhang L; Chen Q; Fang Q; Wang J
    J Transl Med; 2023 Sep; 21(1):593. PubMed ID: 37670388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Close interaction with bone marrow mesenchymal stromal cells induces the development of cancer stem cell-like immunophenotype in B cell precursor acute lymphoblastic leukemia cells.
    Kihira K; Chelakkot VS; Kainuma H; Okumura Y; Tsuboya N; Okamura S; Kurihara K; Iwamoto S; Komada Y; Hori H
    Int J Hematol; 2020 Dec; 112(6):795-806. PubMed ID: 32862292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ActivinA: a new leukemia-promoting factor conferring migratory advantage to B-cell precursor-acute lymphoblastic leukemic cells.
    Portale F; Cricrì G; Bresolin S; Lupi M; Gaspari S; Silvestri D; Russo B; Marino N; Ubezio P; Pagni F; Vergani P; Kronnie GT; Valsecchi MG; Locatelli F; Rizzari C; Biondi A; Dander E; D'Amico G
    Haematologica; 2019 Mar; 104(3):533-545. PubMed ID: 30262563
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bone marrow mesenchymal stem cells in microenvironment transform into cancer-associated fibroblasts to promote the progression of B-cell acute lymphoblastic leukemia.
    Pan C; Liu P; Ma D; Zhang S; Ni M; Fang Q; Wang J
    Biomed Pharmacother; 2020 Oct; 130():110610. PubMed ID: 34321159
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bortezomib interferes with adhesion of B cell precursor acute lymphoblastic leukemia cells through SPARC up-regulation in human bone marrow mesenchymal stromal/stem cells.
    Iwasa M; Miura Y; Fujishiro A; Fujii S; Sugino N; Yoshioka S; Yokota A; Hishita T; Hirai H; Andoh A; Ichinohe T; Maekawa T
    Int J Hematol; 2017 May; 105(5):587-597. PubMed ID: 28044259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro simulation of the acute lymphoblastic leukemia niche: a critical view on the optimal approximation for drug testing.
    Pottosin I; Olivas-Aguirre M; Dobrovinskaya O
    J Leukoc Biol; 2023 Jul; 114(1):21-41. PubMed ID: 37039524
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Bone Marrow Niche in B-Cell Acute Lymphoblastic Leukemia: The Role of Microenvironment from Pre-Leukemia to Overt Leukemia.
    Dander E; Palmi C; D'Amico G; Cazzaniga G
    Int J Mol Sci; 2021 Apr; 22(9):. PubMed ID: 33922612
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bone marrow niche-derived extracellular matrix-degrading enzymes influence the progression of B-cell acute lymphoblastic leukemia.
    Verma D; Zanetti C; Godavarthy PS; Kumar R; Minciacchi VR; Pfeiffer J; Metzler M; Lefort S; Maguer-Satta V; Nicolini FE; Burroni B; Fontenay M; Krause DS
    Leukemia; 2020 Jun; 34(6):1540-1552. PubMed ID: 31919471
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adipocytes disrupt the translational programme of acute lymphoblastic leukaemia to favour tumour survival and persistence.
    Heydt Q; Xintaropoulou C; Clear A; Austin M; Pislariu I; Miraki-Moud F; Cutillas P; Korfi K; Calaminici M; Cawthorn W; Suchacki K; Nagano A; Gribben JG; Smith M; Cavenagh JD; Oakervee H; Castleton A; Taussig D; Peck B; Wilczynska A; McNaughton L; Bonnet D; Mardakheh F; Patel B
    Nat Commun; 2021 Sep; 12(1):5507. PubMed ID: 34535653
    [TBL] [Abstract][Full Text] [Related]  

  • 15. B- and T-cell acute lymphoblastic leukemias evade chemotherapy at distinct sites in the bone marrow.
    Barz MJ; Behrmann L; Capron D; Zuchtriegel G; Steffen FD; Kunz L; Zhang Y; Vermeerbergen IJ; Marovca B; Kirschmann M; Zech A; Nombela-Arrieta C; Ziegler U; Schroeder T; Bornhauser B; Bourquin JP
    Haematologica; 2023 May; 108(5):1244-1258. PubMed ID: 36325888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Bone Marrow Microenvironment in B-Cell Development and Malignancy.
    Hughes AM; Kuek V; Kotecha RS; Cheung LC
    Cancers (Basel); 2022 Apr; 14(9):. PubMed ID: 35565219
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The age of the bone marrow microenvironment influences B-cell acute lymphoblastic leukemia progression via CXCR5-CXCL13.
    Zanetti C; Kumar R; Ender J; Godavarthy PS; Hartmann M; Hey J; Breuer K; Weissenberger ES; Minciacchi VR; Karantanou C; Gu Z; Roberts KG; Metzler M; Stock W; Mullighan CG; Bloomfield CD; Filmann N; Bankov K; Hartmann S; Hasserjian RP; Cousins AF; Halsey C; Plass C; Lipka DB; Krause DS
    Blood; 2021 Nov; 138(19):1870-1884. PubMed ID: 34424946
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Blockade of FGF2/FGFR2 partially overcomes bone marrow mesenchymal stromal cells mediated progression of T-cell acute lymphoblastic leukaemia.
    Tian C; Li Y; Wang L; Si J; Zheng Y; Kang J; Wang Y; You MJ; Zheng G
    Cell Death Dis; 2022 Nov; 13(11):922. PubMed ID: 36333298
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of mesenchymal stromal cell-derived vesicular cargo on B-cell acute lymphoblastic leukemia progression.
    Karantanou C; Minciacchi VR; Kumar R; Zanetti C; Bravo J; Pereira RS; Tascher G; Tertel T; Covarrubias-Pinto A; Bankov K; Pfeffermann LM; Bonig H; Divieti-Pajevic P; McEwan DG; Giebel B; Münch C; Dikic I; Krause DS
    Blood Adv; 2023 Apr; 7(7):1190-1203. PubMed ID: 36044386
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetically engineered mesenchymal stromal cells produce IL-3 and TPO to further improve human scaffold-based xenograft models.
    Carretta M; de Boer B; Jaques J; Antonelli A; Horton SJ; Yuan H; de Bruijn JD; Groen RWJ; Vellenga E; Schuringa JJ
    Exp Hematol; 2017 Jul; 51():36-46. PubMed ID: 28456746
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.