These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Dietary potassium stimulates Ppp1Ca-Ppp1r1a dephosphorylation of kidney NaCl cotransporter and reduces blood pressure. Grimm PR; Tatomir A; Rosenbaek LL; Kim BY; Li D; Delpire EJ; Fenton RA; Welling PA J Clin Invest; 2023 Nov; 133(21):. PubMed ID: 37676724 [TBL] [Abstract][Full Text] [Related]
3. Extracellular K Penton D; Czogalla J; Wengi A; Himmerkus N; Loffing-Cueni D; Carrel M; Rajaram RD; Staub O; Bleich M; Schweda F; Loffing J J Physiol; 2016 Nov; 594(21):6319-6331. PubMed ID: 27457700 [TBL] [Abstract][Full Text] [Related]
4. SPAK and OSR1 play essential roles in potassium homeostasis through actions on the distal convoluted tubule. Ferdaus MZ; Barber KW; López-Cayuqueo KI; Terker AS; Argaiz ER; Gassaway BM; Chambrey R; Gamba G; Rinehart J; McCormick JA J Physiol; 2016 Sep; 594(17):4945-66. PubMed ID: 27068441 [TBL] [Abstract][Full Text] [Related]
5. Constitutively Active SPAK Causes Hyperkalemia by Activating NCC and Remodeling Distal Tubules. Grimm PR; Coleman R; Delpire E; Welling PA J Am Soc Nephrol; 2017 Sep; 28(9):2597-2606. PubMed ID: 28442491 [TBL] [Abstract][Full Text] [Related]
6. Roles of WNK4 and SPAK in K Mukherjee A; Yang CL; McCormick JA; Martz K; Sharma A; Ellison DH Am J Physiol Renal Physiol; 2021 May; 320(5):F719-F733. PubMed ID: 33719576 [TBL] [Abstract][Full Text] [Related]
7. Deletion of KS-WNK1 promotes NCC activation by increasing WNK1/4 abundance. Ferdaus MZ; Terker AS; Koumangoye RB; Al-Qusairi L; Welling PA; Delpire E Am J Physiol Renal Physiol; 2024 Sep; 327(3):F373-F385. PubMed ID: 38961847 [TBL] [Abstract][Full Text] [Related]
8. The interplay of renal potassium and sodium handling in blood pressure regulation: critical role of the WNK-SPAK-NCC pathway. Wu A; Wolley M; Stowasser M J Hum Hypertens; 2019 Jul; 33(7):508-523. PubMed ID: 30723251 [TBL] [Abstract][Full Text] [Related]
9. Renal Natriuretic Peptide Receptor-C Deficiency Attenuates NaCl Cotransporter Activity in Angiotensin II-Induced Hypertension. Shao S; Li XD; Lu YY; Li SJ; Chen XH; Zhou HD; He S; Guo YT; Lu X; Gao PJ; Wang JG Hypertension; 2021 Mar; 77(3):868-881. PubMed ID: 33486984 [TBL] [Abstract][Full Text] [Related]
10. WNK bodies cluster WNK4 and SPAK/OSR1 to promote NCC activation in hypokalemia. Thomson MN; Cuevas CA; Bewarder TM; Dittmayer C; Miller LN; Si J; Cornelius RJ; Su XT; Yang CL; McCormick JA; Hadchouel J; Ellison DH; Bachmann S; Mutig K Am J Physiol Renal Physiol; 2020 Jan; 318(1):F216-F228. PubMed ID: 31736353 [TBL] [Abstract][Full Text] [Related]
11. SPAK-mediated NCC regulation in response to low-K+ diet. Wade JB; Liu J; Coleman R; Grimm PR; Delpire E; Welling PA Am J Physiol Renal Physiol; 2015 Apr; 308(8):F923-31. PubMed ID: 25651563 [TBL] [Abstract][Full Text] [Related]
12. Activation of the kidney sodium chloride cotransporter by the β2-adrenergic receptor agonist salbutamol increases blood pressure. Poulsen SB; Cheng L; Penton D; Kortenoeven MLA; Matchkov VV; Loffing J; Little R; Murali SK; Fenton RA Kidney Int; 2021 Aug; 100(2):321-335. PubMed ID: 33940111 [TBL] [Abstract][Full Text] [Related]
13. SPAK isoforms and OSR1 regulate sodium-chloride co-transporters in a nephron-specific manner. Grimm PR; Taneja TK; Liu J; Coleman R; Chen YY; Delpire E; Wade JB; Welling PA J Biol Chem; 2012 Nov; 287(45):37673-90. PubMed ID: 22977235 [TBL] [Abstract][Full Text] [Related]
14. Kinase Scaffold Cab39 Is Necessary for Phospho-Activation of the Thiazide-Sensitive NCC. Ferdaus MZ; Koumangoye RB; Welling PA; Delpire E Hypertension; 2024 Apr; 81(4):801-810. PubMed ID: 38258567 [TBL] [Abstract][Full Text] [Related]
16. Unique chloride-sensing properties of WNK4 permit the distal nephron to modulate potassium homeostasis. Terker AS; Zhang C; Erspamer KJ; Gamba G; Yang CL; Ellison DH Kidney Int; 2016 Jan; 89(1):127-34. PubMed ID: 26422504 [TBL] [Abstract][Full Text] [Related]
17. Differential roles of WNK4 in regulation of NCC in vivo. Yang YS; Xie J; Yang SS; Lin SH; Huang CL Am J Physiol Renal Physiol; 2018 May; 314(5):F999-F1007. PubMed ID: 29384416 [TBL] [Abstract][Full Text] [Related]
18. Sympathetic stimulation of thiazide-sensitive sodium chloride cotransport in the generation of salt-sensitive hypertension. Terker AS; Yang CL; McCormick JA; Meermeier NP; Rogers SL; Grossmann S; Trompf K; Delpire E; Loffing J; Ellison DH Hypertension; 2014 Jul; 64(1):178-84. PubMed ID: 24799612 [TBL] [Abstract][Full Text] [Related]
19. Potassium intake modulates the thiazide-sensitive sodium-chloride cotransporter (NCC) activity via the Kir4.1 potassium channel. Wang MX; Cuevas CA; Su XT; Wu P; Gao ZX; Lin DH; McCormick JA; Yang CL; Wang WH; Ellison DH Kidney Int; 2018 Apr; 93(4):893-902. PubMed ID: 29310825 [TBL] [Abstract][Full Text] [Related]
20. Modulation of NCC activity by low and high K(+) intake: insights into the signaling pathways involved. Castañeda-Bueno M; Cervantes-Perez LG; Rojas-Vega L; Arroyo-Garza I; Vázquez N; Moreno E; Gamba G Am J Physiol Renal Physiol; 2014 Jun; 306(12):F1507-19. PubMed ID: 24761002 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]