These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 38465679)

  • 1. Unraveling motion in proteins by combining NMR relaxometry and molecular dynamics simulations: A case study on ubiquitin.
    Champion C; Lehner M; Smith AA; Ferrage F; Bolik-Coulon N; Riniker S
    J Chem Phys; 2024 Mar; 160(10):. PubMed ID: 38465679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing Methyl Group Dynamics in Proteins by NMR Cross-Correlated Dipolar Relaxation and Molecular Dynamics Simulations.
    Ali AAAI; Hoffmann F; Schäfer LV; Mulder FAA
    J Chem Theory Comput; 2022 Dec; 18(12):7722-7732. PubMed ID: 36326619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fitting Force Field Parameters to NMR Relaxation Data.
    Kümmerer F; Orioli S; Lindorff-Larsen K
    J Chem Theory Comput; 2023 Jun; 19(12):3741-3751. PubMed ID: 37276045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Explicit models of motions to analyze NMR relaxation data in proteins.
    Bolik-Coulon N; Ferrage F
    J Chem Phys; 2022 Sep; 157(12):125102. PubMed ID: 36182415
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How does it really move? Recent progress in the investigation of protein nanosecond dynamics by NMR and simulation.
    Stenström O; Champion C; Lehner M; Bouvignies G; Riniker S; Ferrage F
    Curr Opin Struct Biol; 2022 Dec; 77():102459. PubMed ID: 36148743
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Motion of a disordered polypeptide chain as studied by paramagnetic relaxation enhancements, 15N relaxation, and molecular dynamics simulations: how fast is segmental diffusion in denatured ubiquitin?
    Xue Y; Skrynnikov NR
    J Am Chem Soc; 2011 Sep; 133(37):14614-28. PubMed ID: 21819149
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting NMR relaxation of proteins from molecular dynamics simulations with accurate methyl rotation barriers.
    Hoffmann F; Mulder FAA; Schäfer LV
    J Chem Phys; 2020 Feb; 152(8):084102. PubMed ID: 32113361
    [TBL] [Abstract][Full Text] [Related]  

  • 8. General order parameter based correlation analysis of protein backbone motions between experimental NMR relaxation measurements and molecular dynamics simulations.
    Liu Q; Shi C; Yu L; Zhang L; Xiong Y; Tian C
    Biochem Biophys Res Commun; 2015 Feb; 457(3):467-72. PubMed ID: 25600810
    [TBL] [Abstract][Full Text] [Related]  

  • 9. What Drives
    Kämpf K; Izmailov SA; Rabdano SO; Groves AT; Podkorytov IS; Skrynnikov NR
    Biophys J; 2018 Dec; 115(12):2348-2367. PubMed ID: 30527335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How wide is the window opened by high-resolution relaxometry on the internal dynamics of proteins in solution?
    Smith AA; Bolik-Coulon N; Ernst M; Meier BH; Ferrage F
    J Biomol NMR; 2021 Mar; 75(2-3):119-131. PubMed ID: 33759077
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Narrowing the gap between experimental and computational determination of methyl group dynamics in proteins.
    Hoffmann F; Xue M; Schäfer LV; Mulder FAA
    Phys Chem Chem Phys; 2018 Oct; 20(38):24577-24590. PubMed ID: 30226234
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Motional timescale predictions by molecular dynamics simulations: case study using proline and hydroxyproline sidechain dynamics.
    Aliev AE; Kulke M; Khaneja HS; Chudasama V; Sheppard TD; Lanigan RM
    Proteins; 2014 Feb; 82(2):195-215. PubMed ID: 23818175
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ensemble MD simulations restrained via crystallographic data: accurate structure leads to accurate dynamics.
    Xue Y; Skrynnikov NR
    Protein Sci; 2014 Apr; 23(4):488-507. PubMed ID: 24452989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the ability of molecular dynamics force fields to recapitulate NMR derived protein side chain order parameters.
    O'Brien ES; Wand AJ; Sharp KA
    Protein Sci; 2016 Jun; 25(6):1156-60. PubMed ID: 26990788
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data.
    Huang J; MacKerell AD
    J Comput Chem; 2013 Sep; 34(25):2135-45. PubMed ID: 23832629
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relating side-chain mobility in proteins to rotameric transitions: insights from molecular dynamics simulations and NMR.
    Hu H; Hermans J; Lee AL
    J Biomol NMR; 2005 Jun; 32(2):151-62. PubMed ID: 16034666
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analytical Framework to Understand the Origins of Methyl Side-Chain Dynamics in Protein Assemblies.
    Zumpfe K; Berbon M; Habenstein B; Loquet A; Smith AA
    J Am Chem Soc; 2024 Mar; 146(12):8164-8178. PubMed ID: 38476076
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanistic Models of Chemical Exchange Induced Relaxation in Protein NMR.
    Olsson S; Noé F
    J Am Chem Soc; 2017 Jan; 139(1):200-210. PubMed ID: 27958728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics of lysine side-chain amino groups in a protein studied by heteronuclear 1H−15N NMR spectroscopy.
    Esadze A; Li DW; Wang T; Brüschweiler R; Iwahara J
    J Am Chem Soc; 2011 Feb; 133(4):909-19. PubMed ID: 21186799
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.