These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 38465723)
1. Eu Nunes Coelho SF; Bispo-Jr AG; de Oliveira NA; Mazali IO; Sigoli FA Nanoscale; 2024 Apr; 16(15):7493-7503. PubMed ID: 38465723 [TBL] [Abstract][Full Text] [Related]
2. Upconversion Luminescence through Cooperative and Energy-Transfer Mechanisms in Yb Xie Y; Sun G; Mandl GA; Maurizio SL; Chen J; Capobianco JA; Sun L Angew Chem Int Ed Engl; 2023 Jan; 62(4):e202216269. PubMed ID: 36437239 [TBL] [Abstract][Full Text] [Related]
3. Sensitisation of Eu(III)- and Tb(III)-based luminescence by Ir(III) units in Ir/lanthanide dyads: evidence for parallel energy-transfer and electron-transfer based mechanisms. Sykes D; Cankut AJ; Ali NM; Stephenson A; Spall SJ; Parker SC; Weinstein JA; Ward MD Dalton Trans; 2014 May; 43(17):6414-28. PubMed ID: 24608523 [TBL] [Abstract][Full Text] [Related]
4. Engineering efficient upconverting nanothermometers using Eu Lucchini G; Speghini A; Canton P; Vetrone F; Quintanilla M Nanoscale Adv; 2019 Feb; 1(2):757-764. PubMed ID: 36132267 [TBL] [Abstract][Full Text] [Related]
5. Enhancing energy migration upconversion through a migratory interlayer in the core-shell-shell nanostructure towards latent fingerprinting. Wang X; Yan L; Liu S; Zhang P; Huang R; Zhou B Nanoscale; 2020 Sep; 12(36):18807-18814. PubMed ID: 32970070 [TBL] [Abstract][Full Text] [Related]
6. Enhancing Förster Resonance Energy Transfer (FRET) Efficiency of Titania-Lanthanide Hybrid Upconversion Nanomaterials by Shortening the Donor-Acceptor Distance. Lin SL; Chen HC; Chang CA Nanomaterials (Basel); 2020 Oct; 10(10):. PubMed ID: 33076441 [TBL] [Abstract][Full Text] [Related]
7. Energy Migration Upconversion in Ce(III)-Doped Heterogeneous Core-Shell-Shell Nanoparticles. Chen X; Jin L; Sun T; Kong W; Yu SF; Wang F Small; 2017 Nov; 13(43):. PubMed ID: 28722357 [TBL] [Abstract][Full Text] [Related]
9. Visible, Near-Infrared, and Dual-Range Luminescence Spanning the 4f Series Sensitized by a Gallium(III)/Lanthanide(III) Metallacrown Structure. Salerno EV; Eliseeva SV; Schneider BL; Kampf JW; Petoud S; Pecoraro VL J Phys Chem A; 2020 Dec; 124(50):10550-10564. PubMed ID: 33263395 [TBL] [Abstract][Full Text] [Related]
10. Simultaneously tuning the luminescent color and realizing an optical temperature sensor by negative thermal expansion in Sc Fu B; Yan H; Li R; Liao Z; Qiu B; Gong G; Huang H; Sun Y; Wen HR; Liao J Dalton Trans; 2024 Jan; 53(2):798-807. PubMed ID: 38086649 [TBL] [Abstract][Full Text] [Related]
11. Ga(3+)/Ln(3+) Metallacrowns: A Promising Family of Highly Luminescent Lanthanide Complexes That Covers Visible and Near-Infrared Domains. Chow CY; Eliseeva SV; Trivedi ER; Nguyen TN; Kampf JW; Petoud S; Pecoraro VL J Am Chem Soc; 2016 Apr; 138(15):5100-9. PubMed ID: 27015360 [TBL] [Abstract][Full Text] [Related]
12. Lanthanide-Sensitized Upconversion Iridium Complex via Triplet Energy Transfer. Xu K; Zheng L; Bao SS; Ma J; Xie X; Zheng LM Small Methods; 2024 May; ():e2400671. PubMed ID: 38803310 [TBL] [Abstract][Full Text] [Related]
13. Enabling Photon Upconversion and Precise Control of Donor-Acceptor Interaction through Interfacial Energy Transfer. Zhou B; Yan L; Tao L; Song N; Wu M; Wang T; Zhang Q Adv Sci (Weinh); 2018 Mar; 5(3):1700667. PubMed ID: 29593969 [TBL] [Abstract][Full Text] [Related]
14. The series of rare earth complexes [Ln2Cl6 (μ-4,4'-bipy)(py)6], Ln=Y, Pr, Nd, Sm-Yb: a molecular model system for luminescence properties in MOFs based on LnCl3 and 4,4'-bipyridine. Matthes PR; Nitsch J; Kuzmanoski A; Feldmann C; Steffen A; Marder TB; Müller-Buschbaum K Chemistry; 2013 Dec; 19(51):17369-78. PubMed ID: 24243814 [TBL] [Abstract][Full Text] [Related]
15. UV and Temperature-Sensing Based on NaGdF Nigoghossian K; Messaddeq Y; Boudreau D; Ribeiro SJL ACS Omega; 2017 May; 2(5):2065-2071. PubMed ID: 31457560 [TBL] [Abstract][Full Text] [Related]
16. Highly bright multicolour emission through energy migration in core/shell nanotubes. Liu L; Zhang N; Leng Z; Liang Y; Li R; Zou L; Gan S Dalton Trans; 2015 Apr; 44(14):6645-54. PubMed ID: 25761706 [TBL] [Abstract][Full Text] [Related]
17. Tuning Luminescence of Lanthanide-Doped Upconversion Nanoparticles through Simultaneous Binary Cation Exchange. Li C; Li X; Liu X ACS Appl Mater Interfaces; 2022 Mar; 14(8):10947-10954. PubMed ID: 35175048 [TBL] [Abstract][Full Text] [Related]
18. Resonance Energy Transfer to Track the Motion of Lanthanide Ions-What Drives the Intermixing in Core-Shell Upconverting Nanoparticles? Bastian PU; Robel N; Schmidt P; Schrumpf T; Günter C; Roddatis V; Kumke MU Biosensors (Basel); 2021 Dec; 11(12):. PubMed ID: 34940272 [TBL] [Abstract][Full Text] [Related]
19. Sensitization of lanthanide complexes through direct spin-forbidden singlet → triplet excitation. Bispo-Jr AG; Mazali IO; Sigoli FA Phys Chem Chem Phys; 2022 Jun; 24(22):13565-13570. PubMed ID: 35635090 [TBL] [Abstract][Full Text] [Related]
20. Energy Migration Upconversion in Manganese(II)-Doped Nanoparticles. Li X; Liu X; Chevrier DM; Qin X; Xie X; Song S; Zhang H; Zhang P; Liu X Angew Chem Int Ed Engl; 2015 Nov; 54(45):13312-7. PubMed ID: 26358961 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]