These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 38465763)
1. Engineering strong man-made cellulosic fibers: a review of the wet spinning process based on cellulose nanofibrils. Zhang Z; Kong Y; Gao J; Han X; Lian Z; Liu J; Wang WJ; Yang X Nanoscale; 2024 Mar; 16(13):6383-6401. PubMed ID: 38465763 [TBL] [Abstract][Full Text] [Related]
2. Nanocellulose-Based Hollow Fibers for Advanced Water and Moisture Management. Niu P; Mao H; Lim KH; Wang Q; Wang WJ; Yang X ACS Nano; 2023 Aug; 17(15):14686-14694. PubMed ID: 37459214 [TBL] [Abstract][Full Text] [Related]
3. Functional Bionanocomposite Fibers of Chitosan Filled with Cellulose Nanofibers Obtained by Gel Spinning. Marquez-Bravo S; Doench I; Molina P; Bentley FE; Tamo AK; Passieux R; Lossada F; David L; Osorio-Madrazo A Polymers (Basel); 2021 May; 13(10):. PubMed ID: 34068136 [TBL] [Abstract][Full Text] [Related]
4. Wet Spinning of Flame-Retardant Cellulosic Fibers Supported by Interfacial Complexation of Cellulose Nanofibrils with Silica Nanoparticles. Nechyporchuk O; Bordes R; Köhnke T ACS Appl Mater Interfaces; 2017 Nov; 9(44):39069-39077. PubMed ID: 29028306 [TBL] [Abstract][Full Text] [Related]
5. Multiscale structure of cellulose microfibrils in regenerated cellulose fibers. Liu J; Sixta H; Ogawa Y; Hummel M; Sztucki M; Nishiyama Y; Burghammer M Carbohydr Polym; 2024 Jan; 324():121512. PubMed ID: 37985097 [TBL] [Abstract][Full Text] [Related]
6. Preparation and Properties of Wet-Spun Microcomposite Filaments from Various CNFs and Alginate. Park JS; Park CW; Han SY; Lee EA; Cindradewi AW; Kim JK; Kwon GJ; Seo YH; Yoo WJ; Gwon JY; Lee SH Polymers (Basel); 2021 May; 13(11):. PubMed ID: 34073715 [TBL] [Abstract][Full Text] [Related]
7. Preparation and Characteristics of Wet-Spun Filament Made of Cellulose Nanofibrils with Different Chemical Compositions. Park CW; Park JS; Han SY; Lee EA; Kwon GJ; Seo YH; Gwon JG; Lee SY; Lee SH Polymers (Basel); 2020 Apr; 12(4):. PubMed ID: 32325798 [TBL] [Abstract][Full Text] [Related]
8. High-strength and functional nanocellulose filaments made by direct wet spinning from low concentration suspensions. Mao H; Niu P; Zhang Z; Kong Y; Wang WJ; Yang X Carbohydr Polym; 2023 Aug; 313():120881. PubMed ID: 37182934 [TBL] [Abstract][Full Text] [Related]
9. Cotton-quality fibers from complexation between anionic and cationic cellulose nanoparticles. Jaekel EE; Torres GR; Antonietti M; Rojas OJ; Filonenko S Sci Rep; 2024 Aug; 14(1):18406. PubMed ID: 39117853 [TBL] [Abstract][Full Text] [Related]
10. Structure and mechanical properties of wet-spun fibers made from natural cellulose nanofibers. Iwamoto S; Isogai A; Iwata T Biomacromolecules; 2011 Mar; 12(3):831-6. PubMed ID: 21302950 [TBL] [Abstract][Full Text] [Related]
11. Wet spinning of strong cellulosic fibres with incorporation of phase change material capsules stabilized by cellulose nanocrystals. Samanta A; Nechyporchuk O; Bordes R Carbohydr Polym; 2023 Jul; 312():120734. PubMed ID: 37059568 [TBL] [Abstract][Full Text] [Related]
12. Improving the Tensile Properties of Wet Spun Silk Fibers Using Rapid Bayesian Algorithm. Yao Y; Allardyce BJ; Rajkhowa R; Hegh D; Sutti A; Subianto S; Gupta S; Rana S; Greenhill S; Venkatesh S; Wang X; Razal JM ACS Biomater Sci Eng; 2020 May; 6(5):3197-3207. PubMed ID: 33463267 [TBL] [Abstract][Full Text] [Related]
13. Cellulose long fibers fabricated from cellulose nanofibers and its strong and tough characteristics. Kafy A; Kim HC; Zhai L; Kim JW; Hai LV; Kang TJ; Kim J Sci Rep; 2017 Dec; 7(1):17683. PubMed ID: 29247191 [TBL] [Abstract][Full Text] [Related]
14. Pilot⁻Scale Production of Carbon Hollow Fiber Membranes from Regenerated Cellulose Precursor-Part I: Optimal Conditions for Precursor Preparation. Haider S; Lie JA; Lindbråthen A; Hägg MB Membranes (Basel); 2018 Nov; 8(4):. PubMed ID: 30428587 [TBL] [Abstract][Full Text] [Related]
15. Reversible Surface Engineering of Cellulose Elementary Fibrils: From Ultralong Nanocelluloses to Advanced Cellulosic Materials. Zhou M; Chen D; Chen Q; Chen P; Song G; Chang C Adv Mater; 2024 May; 36(21):e2312220. PubMed ID: 38288877 [TBL] [Abstract][Full Text] [Related]
16. Ultrastrong and flame-retardant microfibers via microfluidic wet spinning of phosphorylated cellulose nanofibrils. Ren N; Chen S; Cui M; Huang R; Qi W; He Z; Su R Carbohydr Polym; 2022 Nov; 296():119945. PubMed ID: 36087993 [TBL] [Abstract][Full Text] [Related]
17. Directed self-assembly of silica nanoparticles in ionic liquid-spun cellulose fibers. Andersson Trojer M; Olsson C; Bengtsson J; Hedlund A; Bordes R J Colloid Interface Sci; 2019 Oct; 553():167-176. PubMed ID: 31202053 [TBL] [Abstract][Full Text] [Related]
18. Heterogeneous Acetylation of Plant Fibers into Micro- and Nanocelluloses for the Synthesis of Highly Stretchable, Tough, and Water-Resistant Co-continuous Filaments via Wet-Spinning. Tripathi A; Ago M; Khan SA; Rojas OJ ACS Appl Mater Interfaces; 2018 Dec; 10(51):44776-44786. PubMed ID: 30484313 [TBL] [Abstract][Full Text] [Related]
19. Continuous Wet Spinning of Regenerated Silk Fibers from Spinning Dopes Containing 4% Fibroin Protein. Wöltje M; Isenberg KL; Cherif C; Aibibu D Int J Mol Sci; 2023 Aug; 24(17):. PubMed ID: 37686298 [TBL] [Abstract][Full Text] [Related]