These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 38465763)

  • 21. Structure and properties of novel fibers spun from cellulose in NaOH/thiourea aqueous solution.
    Ruan D; Zhang L; Zhou J; Jin H; Chen H
    Macromol Biosci; 2004 Dec; 4(12):1105-12. PubMed ID: 15586387
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Upcycling of cellulosic textile waste with bacterial cellulose via IoncellĀ® technology.
    A G S Silva F; Schlapp-Hackl I; Nygren N; Heimala S; Leinonen A; Dourado F; Gama M; Hummel M
    Int J Biol Macromol; 2024 Jun; 271(Pt 1):132194. PubMed ID: 38821791
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optimization of Dry-Jet Wet Spinning of Regenerated Cellulose Fibers Using [mTBDH][OAc] as a Solvent.
    Fang W; Lim EY; Nieminen KL; Sixta H
    ACS Omega; 2023 Sep; 8(37):34103-34110. PubMed ID: 37744829
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Wet-Spinning Process for Producing Carbon Nanotube/Polyvinylidene Fluoride Fibers Having Highly Consistent Electrical and Mechanical Properties.
    Kang KW; Choi CW; Jin JW
    Polymers (Basel); 2021 Nov; 13(22):. PubMed ID: 34833347
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The preparation and study of regenerated cellulose fibers by cellulose carbamate pathway.
    Teng Y; Yu G; Fu Y; Yin C
    Int J Biol Macromol; 2018 Feb; 107(Pt A):383-392. PubMed ID: 28882759
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Wet-spinning of carbon nanotube fibers: dispersion, processing and properties.
    Yang Z; Yang Y; Huang Y; Shao Y; Hao H; Yao S; Xi Q; Guo Y; Tong L; Jian M; Shao Y; Zhang J
    Natl Sci Rev; 2024 Oct; 11(10):nwae203. PubMed ID: 39301072
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Absorbent Filaments from Cellulose Nanofibril Hydrogels through Continuous Coaxial Wet Spinning.
    Lundahl MJ; Klar V; Ajdary R; Norberg N; Ago M; Cunha AG; Rojas OJ
    ACS Appl Mater Interfaces; 2018 Aug; 10(32):27287-27296. PubMed ID: 30014693
    [TBL] [Abstract][Full Text] [Related]  

  • 28. From Cellulose to Cellulose Nanofibrils-A Comprehensive Review of the Preparation and Modification of Cellulose Nanofibrils.
    Yi T; Zhao H; Mo Q; Pan D; Liu Y; Huang L; Xu H; Hu B; Song H
    Materials (Basel); 2020 Nov; 13(22):. PubMed ID: 33182719
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structure and properties of novel regenerated cellulose fibers prepared in NaOH complex solution.
    Wang W; Zhang P; Zhang S; Li F; Yu J; Lin J
    Carbohydr Polym; 2013 Oct; 98(1):1031-8. PubMed ID: 23987444
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multifunctional cellulosic materials prepared by a reactive DES based zero-waste system.
    Yang X; Abe K; Yano H; Wang L
    Nano Lett; 2022 Aug; 22(15):6128-6134. PubMed ID: 35852968
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cellulose nanofibrils/polyvinyl acetate nanocomposite adhesives with improved mechanical properties.
    Chaabouni O; Boufi S
    Carbohydr Polym; 2017 Jan; 156():64-70. PubMed ID: 27842853
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Smart and robust phase change cellulose fibers from coaxial wet-spinning of cellulose nanofibril-reinforced paraffin capsules with excellent thermal management.
    Yang K; Duan C; Ma R; Liu X; Meng Z; Xie Z; Ni Y
    Carbohydr Polym; 2024 Dec; 346():122649. PubMed ID: 39245510
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Strength and Water Interactions of Cellulose I Filaments Wet-Spun from Cellulose Nanofibril Hydrogels.
    Lundahl MJ; Cunha AG; Rojo E; Papageorgiou AC; Rautkari L; Arboleda JC; Rojas OJ
    Sci Rep; 2016 Jul; 6():30695. PubMed ID: 27465828
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Preparation and properties of wet-spun agar fibers.
    Liu J; Xue Z; Zhang W; Yan M; Xia Y
    Carbohydr Polym; 2018 Feb; 181():760-767. PubMed ID: 29254033
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of coagulating conditions on the crystallinity, orientation and mechanical properties of regenerated cellulose fibers.
    Wang B; Nie Y; Kang Z; Liu X
    Int J Biol Macromol; 2023 Jan; 225():1374-1383. PubMed ID: 36435466
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Assembling nanocelluloses into fibrous materials and their emerging applications.
    Wang B; Qiu S; Chen Z; Hu Y; Shi G; Zhuo H; Zhang H; Zhong L
    Carbohydr Polym; 2023 Jan; 299():120008. PubMed ID: 36876760
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pure Chitosan-Based Fibers Manufactured by a Wet Spinning Lab-Scale Process Using Ionic Liquids.
    Kuznik I; Kruppke I; Cherif C
    Polymers (Basel); 2022 Jan; 14(3):. PubMed ID: 35160465
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Endoglucanase pretreatment aids in isolating tailored-cellulose nanofibrils combining energy saving and high-performance packaging.
    Las-Casas B; Arantes V
    Int J Biol Macromol; 2023 Jul; 242(Pt 4):125057. PubMed ID: 37244346
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Wet-Spun Composite Filaments from Lignocellulose Nanofibrils/Alginate and Their Physico-Mechanical Properties.
    Park JS; Han SY; Bandi R; Lee EA; Cindradewi AW; Kim JK; Kwon GJ; Seo YH; Youe WJ; Gwon J; Park CW; Lee SH
    Polymers (Basel); 2021 Sep; 13(17):. PubMed ID: 34503015
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Toward continuous high-performance bacterial cellulose macrofibers by implementing grading-stretching in spinning.
    Zhao X; Chen S; Wu Z; Sheng N; Zhang M; Liang Q; Han Z; Wang H
    Carbohydr Polym; 2022 Apr; 282():119133. PubMed ID: 35123765
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.