These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 38465803)

  • 21. Quantifying electron-transfer in liquid-solid contact electrification and the formation of electric double-layer.
    Lin S; Xu L; Chi Wang A; Wang ZL
    Nat Commun; 2020 Jan; 11(1):399. PubMed ID: 31964882
    [TBL] [Abstract][Full Text] [Related]  

  • 22. On the Electron-Transfer Mechanism in the Contact-Electrification Effect.
    Xu C; Zi Y; Wang AC; Zou H; Dai Y; He X; Wang P; Wang YC; Feng P; Li D; Wang ZL
    Adv Mater; 2018 Apr; 30(15):e1706790. PubMed ID: 29508454
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhanced electro-Fenton catalytic performance with in-situ grown Ce/Fe@NPC-GF as self-standing cathode: Fabrication, influence factors and mechanism.
    Qiu S; Wang Y; Wan J; Ma Y; Yan Z; Yang S
    Chemosphere; 2021 Jun; 273():130269. PubMed ID: 33773811
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Understanding contact electrification at liquid-solid interfaces from surface electronic structure.
    Sun M; Lu Q; Wang ZL; Huang B
    Nat Commun; 2021 Mar; 12(1):1752. PubMed ID: 33741951
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Degradation of methyl orange by dielectric films based on contact-electro-catalysis.
    Zhao X; Su Y; Berbille A; Wang ZL; Tang W
    Nanoscale; 2023 Mar; 15(13):6243-6251. PubMed ID: 36896686
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Probing Contact Electrification: A Cohesively Sticky Problem.
    Sherrell PC; Sutka A; Shepelin NA; Lapcinskis L; Verners O; Germane L; Timusk M; Fenati RA; Malnieks K; Ellis AV
    ACS Appl Mater Interfaces; 2021 Sep; 13(37):44935-44947. PubMed ID: 34498850
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Revisiting Contact Electrification at Polymer-Liquid Interfaces.
    Tan C; Xu R; Zhang Q
    Langmuir; 2022 Oct; 38(39):11882-11891. PubMed ID: 36122176
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Accelerating Fe
    Mao Y; Wang P; Zhang D; Xia Y; Li Y; Zeng W; Zhan S; Crittenden JC
    Environ Sci Technol; 2021 Oct; 55(19):13326-13334. PubMed ID: 34524793
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Erratum: Eyestalk Ablation to Increase Ovarian Maturation in Mud Crabs.
    J Vis Exp; 2023 May; (195):. PubMed ID: 37235796
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Triboelectric Nanogenerator Array as a Probe for In Situ Dynamic Mapping of Interface Charge Transfer at a Liquid-Solid Contacting.
    Zhang J; Lin S; Wang ZL
    ACS Nano; 2023 Jan; ():. PubMed ID: 36602519
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Advances in capillary electro-chromatography.
    Mao Z; Chen Z
    J Pharm Anal; 2019 Aug; 9(4):227-237. PubMed ID: 31452960
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interface inter-atomic electron-transition induced photon emission in contact-electrification.
    Li D; Xu C; Liao Y; Cai W; Zhu Y; Wang ZL
    Sci Adv; 2021 Sep; 7(39):eabj0349. PubMed ID: 34559569
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Analysis of three antipyretic analgesic drugs by open-tubular capillary electrochromatography].
    Liu L; Qiao J; Zhang H; Qi L
    Se Pu; 2020 Sep; 38(9):1107-1114. PubMed ID: 34213278
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electron Transfer in Nanoscale Contact Electrification: Photon Excitation Effect.
    Lin S; Xu L; Zhu L; Chen X; Wang ZL
    Adv Mater; 2019 Jul; 31(27):e1901418. PubMed ID: 31095783
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of Surface Functional Groups on Electron Transfer at Liquid-Solid Interfacial Contact Electrification.
    Lin S; Zheng M; Luo J; Wang ZL
    ACS Nano; 2020 Aug; 14(8):10733-10741. PubMed ID: 32806074
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Highly efficient electro-generation of H
    An J; Li N; Zhao Q; Qiao Y; Wang S; Liao C; Zhou L; Li T; Wang X; Feng Y
    Water Res; 2019 Nov; 164():114933. PubMed ID: 31382153
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tribochemically Controlled Atom Transfer Radical Polymerization Enabled by Contact Electrification.
    Wang C; Zhao R; Fan W; Li L; Feng H; Li Z; Yan C; Shao X; Matyjaszewski K; Wang Z
    Angew Chem Int Ed Engl; 2023 Sep; 62(37):e202309440. PubMed ID: 37507344
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nanoscale charge transfer and diffusion at the MoS
    Xu R; Ye S; Xu K; Lei L; Hussain S; Zheng Z; Pang F; Xing S; Liu X; Ji W; Cheng Z
    Nanotechnology; 2018 Aug; 29(35):355701. PubMed ID: 29873636
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interfacial wettability and mass transfer characterizations for gas-liquid-solid triple-phase catalysis.
    Shi R; Shang L; Zhou C; Zhao Y; Zhang T
    Exploration (Beijing); 2022 Jun; 2(3):20210046. PubMed ID: 37323701
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Triboelectric Nanogenerator as a Probe for Measuring the Charge Transfer between Liquid and Solid Surfaces.
    Zhang J; Lin S; Zheng M; Wang ZL
    ACS Nano; 2021 Sep; 15(9):14830-14837. PubMed ID: 34415141
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.