These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 38465930)

  • 1. Decellularized Apple-Derived Scaffolds for Bone Tissue Engineering In Vitro and In Vivo.
    Leblanc Latour M; Tarar M; Hickey RJ; Cuerrier CM; Catelas I; Pelling AE
    J Vis Exp; 2024 Feb; (204):. PubMed ID: 38465930
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functionalization of porous BCP scaffold by generating cell-derived extracellular matrix from rat bone marrow stem cells culture for bone tissue engineering.
    Kim B; Ventura R; Lee BT
    J Tissue Eng Regen Med; 2018 Feb; 12(2):e1256-e1267. PubMed ID: 28752541
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellulose and collagen derived micro-nano structured scaffolds for bone tissue engineering.
    Aravamudhan A; Ramos DM; Nip J; Harmon MD; James R; Deng M; Laurencin CT; Yu X; Kumbar SG
    J Biomed Nanotechnol; 2013 Apr; 9(4):719-31. PubMed ID: 23621034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanosensitive osteogenesis on native cellulose scaffolds for bone tissue engineering.
    Leblanc Latour M; Pelling AE
    J Biomech; 2022 Apr; 135():111030. PubMed ID: 35288315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomimetic mineralization of novel hydroxyethyl cellulose/soy protein isolate scaffolds promote bone regeneration in vitro and in vivo.
    Wu M; Wu P; Xiao L; Zhao Y; Yan F; Liu X; Xie Y; Zhang C; Chen Y; Cai L
    Int J Biol Macromol; 2020 Nov; 162():1627-1641. PubMed ID: 32781127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of silk-based scaffolds for tissue engineering of bone from human adipose-derived stem cells.
    Correia C; Bhumiratana S; Yan LP; Oliveira AL; Gimble JM; Rockwood D; Kaplan DL; Sousa RA; Reis RL; Vunjak-Novakovic G
    Acta Biomater; 2012 Jul; 8(7):2483-92. PubMed ID: 22421311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Osteogenic differentiation of human mesenchymal stem cells in 3-D Zr-Si organic-inorganic scaffolds produced by two-photon polymerization technique.
    Koroleva A; Deiwick A; Nguyen A; Schlie-Wolter S; Narayan R; Timashev P; Popov V; Bagratashvili V; Chichkov B
    PLoS One; 2015; 10(2):e0118164. PubMed ID: 25706270
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Co-culture cell-derived extracellular matrix loaded electrospun microfibrous scaffolds for bone tissue engineering.
    Carvalho MS; Silva JC; Udangawa RN; Cabral JMS; Ferreira FC; da Silva CL; Linhardt RJ; Vashishth D
    Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():479-490. PubMed ID: 30889723
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Osteogenic Differentiation of Mesenchymal Stem Cells with Silica-Coated Gold Nanoparticles for Bone Tissue Engineering.
    Gandhimathi C; Quek YJ; Ezhilarasu H; Ramakrishna S; Bay BH; Srinivasan DK
    Int J Mol Sci; 2019 Oct; 20(20):. PubMed ID: 31623264
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [A novel tissue-engineered bone constructed by using human adipose-derived stem cells and biomimetic calcium phosphate scaffold coprecipitated with bone morphogenetic protein-2].
    Jiang WR; Zhang X; Liu YS; Wu G; Ge YJ; Zhou YS
    Beijing Da Xue Xue Bao Yi Xue Ban; 2017 Feb; 49(1):6-15. PubMed ID: 28202997
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cabbage-derived three-dimensional cellulose scaffold-induced osteogenic differentiation of stem cells.
    Salehi A; Mobarhan MA; Mohammadi J; Shahsavarani H; Shokrgozar MA; Alipour A
    J Cell Physiol; 2021 Jul; 236(7):5306-5316. PubMed ID: 33377240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gelatin methacrylate scaffold for bone tissue engineering: The influence of polymer concentration.
    Celikkin N; Mastrogiacomo S; Jaroszewicz J; Walboomers XF; Swieszkowski W
    J Biomed Mater Res A; 2018 Jan; 106(1):201-209. PubMed ID: 28884519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extracellular matrix decorated polycaprolactone scaffolds for improved mesenchymal stem/stromal cell osteogenesis towards a patient-tailored bone tissue engineering approach.
    Silva JC; Carvalho MS; Udangawa RN; Moura CS; Cabral JMS; L da Silva C; Ferreira FC; Vashishth D; Linhardt RJ
    J Biomed Mater Res B Appl Biomater; 2020 Jul; 108(5):2153-2166. PubMed ID: 31916699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D-printed bioactive and biodegradable hydrogel scaffolds of alginate/gelatin/cellulose nanocrystals for tissue engineering.
    Dutta SD; Hexiu J; Patel DK; Ganguly K; Lim KT
    Int J Biol Macromol; 2021 Jan; 167():644-658. PubMed ID: 33285198
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D Scaffolds with Different Stiffness but the Same Microstructure for Bone Tissue Engineering.
    Chen G; Dong C; Yang L; Lv Y
    ACS Appl Mater Interfaces; 2015 Jul; 7(29):15790-802. PubMed ID: 26151287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proliferation and differentiation of mesenchymal stem cells on scaffolds containing chitosan, calcium polyphosphate and pigeonite for bone tissue engineering.
    Dhivya S; Keshav Narayan A; Logith Kumar R; Viji Chandran S; Vairamani M; Selvamurugan N
    Cell Prolif; 2018 Feb; 51(1):. PubMed ID: 29159895
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synergistic effect of scaffold composition and dynamic culturing environment in multilayered systems for bone tissue engineering.
    Rodrigues MT; Martins A; Dias IR; Viegas CA; Neves NM; Gomes ME; Reis RL
    J Tissue Eng Regen Med; 2012 Nov; 6(10):e24-30. PubMed ID: 22451140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Induced Osteogenesis in Plants Decellularized Scaffolds.
    Lee J; Jung H; Park N; Park SH; Ju JH
    Sci Rep; 2019 Dec; 9(1):20194. PubMed ID: 31882858
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [EXPERIMENTAL STUDY ON OSTEOGENESIS OF SYNOVIUM-DERIVED MESENCHYMAL STEM CELLS IN VITRO AND IN VIVO].
    Zheng W; Yang M; Wu C; Su X
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2016 Jan; 30(1):102-9. PubMed ID: 27062856
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced osteogenesis on proantocyanidin-loaded date palm endocarp cellulosic matrices: A novel sustainable approach for guided bone regeneration.
    Galefi A; Nourany M; Hosseini S; Alipour A; Azari S; Jahanfar M; Farrokhi N; Homaeigohar S; Shahsavarani H
    Int J Biol Macromol; 2023 Jul; 242(Pt 2):124857. PubMed ID: 37187421
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.